
Basics of Statics and Dynamics eA1

Introduction: what is it about?

Any book written on the introduction of Statics or Dynamics starts by positioning the subject within
science: this approach is also adopted here but only a rough overview is given.

Mechanics is the branch of physics that deals with the conditions of rest and motion of bodies and
materials. It can further be classified according to the consistency of the material (mechanics of
gases, fluids and solids): it is only dealt with  solid bodies here. A solid body can be considered
either perfectly rigid (no deformation is possible) or deformable (even if the range of deformation is
restricted). Conditions of motion and rest of bodies can be analysed without respect to their phisical
reasons, using only phenomenological parameters like distance, velocity and acceleration: in theis
cause we speak about  Kinematics. If the reasons of rest or motions are also considered, the term
Kinetics is applied. Finally, Statics and Dynamics are distinguished according to that the body is in
rest or motion. (Note that there exist different concepts in sub- or coordination of these subjects, e.g.
those considering Kinetics and Kinematics being two branches of Dynamics.)

On  the  scale  of  parameters  we  use  in  the  description  of  motions,  Newtonian  mechanics  is
completely adequate, i.e., Newton's laws apply sufficiently:

1. Principle of inertial motion. "Every body perseveres in its state of being at rest or of moving
uniformly straight  forward,  except  insofar  as  it  is  compelled  to  change  its  state  by  force
impressed".

2.  Law of Dynamics. "The rate of change of momentum of an object is proportional to the
resultant force acting on the body and is in the same direction", that is, the rate of change of
velocity (acceleration, a) of a material particle is proportional to the force F and the factor of
proportion is the (constant) mass m of the body: F=m a.

3. Principle of action and reaction. "All forces occur in pairs, and these two forces are equal in
magnitude and opposite in direction." It is important to emphasize that two forces in such a
pair act on two different bodies in interaction. In other words, "every action has opposite and
equalent reaction".

The first Newton's law should also be completed by stating that our frame (coordinate system) is inertial. It allows for a
reformulation of this law as that any physical events proceed in the same way described in two frames moving with a
constant relative velocity (that is, both for magnitude and direction) with respect to the other. For instance, the trajectory
of a thrown ball is approximately parabolic either seen from the ground or through the window of a train travelling with
uniform speed (the statement about parabolic shape will be proved later).

Frames have just been mentioned: even if there is no general rule for setting a coordinate system,
computations require to set a frame either in a right-handed or left-handed fashion. Here we adopt
the first choice: a right handed system is named after its property that axes x,  y and z follow each
other  in  the order  of the first  three fingers of our right hand (if  all  axes in  such a system are
perpendicular to each othar, we speak about a Cartesian system). Consequently, a customary planar
coordinate system xy with  x directed to the right and  y upwards,  z points in front of us. Another
equivalent configuration is when  x points to the right,  z downwards and  y in front of us (other
combinations are still possible but these are the most common ones). 

In Newton's second law, mass m is a scalar, that is, can be specified by a single number. F and a,
however, are  vectors and have therefore both magnitude and  direction. Such vector quantities are
graphically displayed by arrows: an arrow has a tail and a tip that specify the  slope of a vector.
'Slope' should not be confused with 'direction' of a vector, which is given by the slope and the sense
(from the tail towards the tip) of a vector together. 

Since vector operations will be used in this course extensively, let us give a short review on them.
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Vectors

Vectors, as have already been mentioned, are directed: they have both magnitude and direction. In
typography, vectors are typeset in bold (or bold italic) typeface for distinction (e.g.,  v can stand for
velocity), but underline is more common in handwriting:  v (note that overbar (arrow) can also be
found as reference to  vectors in  both print  or handwriting).  In this  workbook, bold typeface is
applied in descriptive sections but it is replaced by underline in problems and examples in order to
facilitate  the  comparison  with  hand-written  solutions.  In  a  graphical  environment,  vectors  are
represented by arrows.

A vector embedded in a coordinate system can be specified by its magnitude and direction. The
magnitude is the length of the vector, treated commonly as a scalar variable (e.g., the magnitude of
vector v is  v), but it can also appear between absolute value signs in handwriting (that is,  v = |v|).
The direction can be related to any other but fixed direction (e.g., coordinate axes) by setting ang
angle  as  well.  Another  way  of  specification  of  vectors  is  possible  as  follows:  perpendicular
projections (called 'components' henceforth) of the vector to each coordinate axis are grouped into a
column vector (delimited therefore by square brackets). Of course, a one-to-one correspondence
should exist between these two ways of specification, since both of them result in the same and
unique vector.

A vector  of  length  1  is  called  unit  vector.  Unit  vectors  along  axes  x,  y and  z are  of  primary
importance and are denoted by symbols i, j, k.

In two dimensions, any vector can uniquely be specified by two scalars: either by two coordinates of
the tip of the vector started at the origin (see vector a in the following example) or by the length of
the vector and the angle subtended by the vector and some of the coordinate axes (see vectors b or c
of the same). There exists a conversion method between the two modes based on trigonometric
functions and the Pythagorean theorem. (Recall that in a right triangle, a leg opposite to the angle
over hypotenuse is the sine, adjacent leg over hypotenuse is the cosine, opposite leg over adjacent
leg is the tangent of the angle.)

If a vector reflects any physical property, then each of its scalar components and its length has the
same physical measure (unit).

Example 1

Specify vectors a ,b  and c .
Give the magnitude and direction of vector a .

Solution

a=[34 ]
b=[ +6⋅sin 25 °

−6⋅cos 25° ]=[ +2.536
−5.438]

c=[−7m⋅cos30 °
−7m⋅sin 30° ]=[−6.062

−3.5 ]m

magnitude of a :

a=|a|=√32
+42

=5
direction of a
(angle subtended by a and +x ):

tanα=
|4|
|3|

→α=53.13 °

Positive or negative sign of any component is decided, to advantage,  upon inspection; numeric
values are then rounded off to four significant figures. One might ask why four and not three or
five; some paragraphs were dedicated to this issue in the Introduction. Eventually, it is a matter of
compromise between accuracy and reasonable efforts: experience of many years of education led us
to adopt this  convention.  Although the number of figures influences the final precision but  the
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precision itself can only be confidently evaluated via mathematical statistical methods. We should
be familiar with that results will be nothing more precise if the 10th digit is put down, while the sign
has already been mistyped.

Exercise 1

Specify vectors d ,e  and f .
Give the magnitude and direction of vector d .

Solution

entries of d  (order, sign):

d=[                 ]
entries of e  (first by formula, then calculated and rounded):

e=[                 ]=[                 ]
entries of f  (first by formula, then calculated and rounded):

f =[                 ]=[                 ]
magnitude of d :

|d|=√       2
+        2

=
direction of d  (angle measured from +x ):

tan δ x- =
|      |
|      |

=           →δ x- =           

In the space any vector can be uniquely given by three scalars; if the tail of the vector is set to the
origin, then, e.g., by three coordinates of its tip. Theoretically it would still possible to deal with
magnitude and directions, where this latter property could be specified by angles α, β, γ subtended
with axes x, y, z, respectively. Note that a magnitude and three angles would mean four parameters
but, according to the Pythagorean theorem, cos2

α+cos2
β+cos2

γ=1  should be satisfied.

Example 2

Specify vectors d  and e .
Give also three angles subtended by vector d
and the coordinate axes, then check the result.
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Solution

d=[235]m
e=[0−2

3−3
5−0]=[−2

0
5]m

magnitude of d : d=|d|=√22
+32

+52
=√38=6.164 m

cosδx=
  2
6.164

→δx=71.07 °

cosδ y=
  3
6.164

→δy=60.88 °

cosδ z=
  5
6.164

→δ z=35.79°

:̌ cos271.07 °+cos260.88 °+cos235.79 °=1.000✓

Exercise 2

Specify vectors g  and h .
Give also three angles subtended by vector h
and the coordinate axes, then check the result.

Solution

entries of g :

g=[
         
 
 ]=[

     
 
 ]

entries of h :

h=[
         
 
 ]

        
magnitude of h : 

h=|h|=

cos γx=

cos γ y=

cos γz=

Check: 

Sum and difference of vectors, precedence of operations

Vectors  can  be  added  both  graphically  and  analytically.  Graphical  addition  is  made  through
concatenation of vectors in a tip-to-tail fashion (since the order of addition does not matter, the
method is also known as the parallelogram method): in this case, one vector is followed by another
such that the tip of the preceding and the tail of the following arrow coincide. Analytic addition of
vectors is performed simply by addition of coordinates.
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Example 3

Calculate vectors a+b , b+c  and a+b+c

if a=[
0.8
1.2
0.5] , b=[

−0.8
0.4

−0.7] , c=[
0.9

−1.1
1.1 ]!

Solution

a+b=[0.8
1.2
0.5]+[−0.8

0.4
−0.7 ]=[

0.8+(−0.8)

1.2+0.4
0.5+(−0.7)]=[ 0.0

1.6
−0.2]

b+c=[
−0.8+1.1

0.4+(−1.1)
−0.7+1.1 ]=[

0.1
−0.7

0.4] a+b+c=[
0.8+(−0.8)+0.9
1.2+0.4−(1.1)

0.5+(−0.7)+1.1]=[0.9
0.5
0.9 ]

Exercise 3

Calculate vectors d+e , e+ f  and f +d+e  if magnitudes 
and directions are given according to the figure

Solution

d+e=[                                   ]
e+ f=[                                   ]
f +d+e=[                                                   ]

Notice that a+b=b+a . Multiplication by a scalar can be introduced by the successive addition of the
vector itself, where the resultant vector  α v  will be parallel to  v ;depending on the scalar  α, the
vector is either stretched, (|α|>1) , shortened (|α|<1) , or even mirrored (α<0) .

A vector multiplied by -1 is called the negative of that vector: a+(−a)=0 .

The  difference  of  two vectors  is  denoted  by the  symbol  a-b,  and  a-b =  a+(-b).  The  order  of
subtraction is not reversible: a-b = -(b-a).
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Example 4

Calculate vectors a−b , b−a

if a=[
12.5

−5.4
8.73 ] ,b=[

3.9
−11.3

6.6 ].
Solution

a−b=[
12.5−3.9

−5.4−(−11.3)

8.73−6.6 ]=[
8.6
5.9
2.13]              b−a=[

3.9−12.5
−11.3−(−5.4)

6.6−8.73 ]=[
−8.6
−5.9
−2.13]

Exercise 4

Calculate vectors e−d , d−e
based on the data of Exercise 1.

Solution

e−d=[                             ]=[           ]
d−e=[                             ]=[           ]

Projection of a vector onto another; scalar product

Scalar  product  (or dot  product,  a·b,  named exactly after  the dot  sign of  multiplication)  of  two
vectors is a scalar number, proportional both to the length of each vector and the cosine of the angle
enclosed by them. Since this angle must be between 0° and 180°, its cosine is between −1 and 1. In
extremal positions the two vectors either point in the same (cos α = 1) direction or (cos α = −1) in
opposite directions.

It can also be computed as the sum of products of vector coordinates as follows:

a⋅b=[
ax

ay

az
]⋅[

bx

b y

bz
]=axbx+a yb y+azbz .

The two methods above are, of course, equivalent.
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Example 5

Calculate dot products of vectors 
a ,b  and c  pairwise.
Calculate the angles enclosed by the vectors as well.

 

Solution

a⋅b=3⋅3+4⋅0=9
a⋅c=3⋅3+4⋅(−2.25)=0
b⋅c=3⋅3+0⋅(−2.25)=9

cosαab=
 a⋅b
|a||b|

=
          9

√32
+42 √32

+02
→αab=53.13°

cosαac=
 a⋅c
|a||c|

=
          0

√32
+42 √32

+2.252
→αab=90°

cosαbc=
 b⋅c
|b||c|

=
          9

√32
+02√32

+2.252
→αab=36.87 °

Exercise 5

Calculate dot products of vectors 
g  and h of Exercise 2.
Calculate the angles enclosed by the vectors as well.

Solution

g⋅h=

cosαgh=
g⋅h
|g||h|

=

Some special cases are worth noting here:

• If one vector in a dot product is a unit vector, then the product itself corresponds to the
(signed) projection of the other vector onto the direction of the unit vector.

• Some other special cases depend on angles between vectors:

• dot product of two perpendicular vectors equals zero,

• dot product of two parallel (unidirectional) vectors equals the product of their lengths,

• dot product of two parallel but oppositely directed vectors equals the negative of product
of their lengths.
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Kinematics of a material particle

Definition:  Material  particle  is  interpreted as a  body without any direction or extension whose
position can uniquely be defined by a single position vector.

Kinematics of a material particle is dedicated to the determination of parameters of motion of that
particle: velocity and acceleration as functions of the position, or, velocity and position as functions
of the acceleration are calculated here.

Rectilinear motion

Rectilinear motion can occur along any straight line.  (The position of the particle could be given by some
function r (t)=r0+eτ⋅s(t )  of t, where r0  is an initial position vector, and e τ  is a unit vector along the line of motion.)
But the coordinate system can be set for convenience such that the particle moves along axis x (or
this could either be y but we adopt the previous choice here).

In this case, the position of the particle is given by the position function x (t) . 

The measure of change of position function in time (in mathematics, the time derivative of the function) is
called velocity function: v ( t) . 

The measure of change of velocity function in time (in mathematics, the time derivative of the function) is
called acceleration function: v ( t) . 
(Combining the mathematical definitions above, acceleration is the second time derivative of the position function.)

All the above measures are signed, i.e., if they are positive, they 'point ahead', if negatives, they
'point back'.

Definition: A rectilinear motion is uniformly accelerating
if the acceleration is time-independent.

For such a case, the following formulae apply:

x (t)=
a
2

(t−t0)
2
+v0⋅( t−t0)+x0

v ( t)=a⋅(t−t 0)+v0

x (t)=x0+
v0+v (t )
   2

⋅(t−t 0)

v2
(t )=v0

2
+2⋅a⋅(x (t)−x0)

In addition to the formal knowledge, it is worth knowing
which parameter does not appear in each formula (current
velocity  in  the  first,  current  position  in  the  second,
acceleration in the third and time in the fourth one): an
equation will be written to advantage by excluding any
variables that are neither known or sought for in the given
problem.

Four  above  formulae  can  also  be  extracted  from three
plots  on  the  right  hand  side,  proceeding  downwards,
integration makes all areas to be proportional to the change of values displayed just above them.

The first formula shows the cumulative effect of constant initial value (position), initial velocity and
the acceleration.
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The second formula concerns the effect of initial velocity and the acceleration.

The third one calculates the distance from an average velocity.

The latter one is a consequence of the first and second: elimination of time leads to a direct link
between velocity and distance.

All these formulae can further be simplified by an appropriate choice of the coordinate system. It is
appropriate to set initial position and time such that  x0=0  and  t 0=0  is satisfied. In this case,
formulae read as follows:

x=
a
2

t 2
+v0 t=

v0+v

   2
t ,    v=v0+a t ,    v2

=v0
2
+2ax

Unfortunately, these formulae must be known by heart (like short poems...).

Uniform rectilinear motion

A special  case  of  rectilinear  motion is  obtained when  a=0 .  This  is  called  uniform rectilinear
motion; in such case, the velocity is constant: v=v0  and x (t)=x0+v0⋅t , which formulae can also
be distilled from those of the uniformly accelerating motion. 

Example 6

Let the velocity of a material particle be given as v ( t)=20−4⋅t (m/s, if the unit of time is s).

Determine the acceleration of the particle.

Determine the distance from the initial position of the particle after 8 seconds elapsed.

At which position it reaches the velocity of 10 m/s?

Solution

With t 0=0 , the parameters can be written into the function of velocity as follows:

v0+a⋅t=20+(−4)⋅t   →   v0=+20m/s , a=−4 m/s2

The acceleration is therefore −4m/s2 .

The current position of the particle is sought for with respect to the initial configuration, so the
origin can be fixed at x0=0 . With the use of the first formula we get:

x (t)=
−4
  2

t
2
+20⋅t  →x (8)=

−4
  2

8
2
+20⋅8→  x (8)=32m

The last question can be reformulated, asking when the particle reaches the velocity of  10 m/s
and where it will be then. With this approach, the answer is as follows:

v ( t)=v0+a⋅t→10=20−4⋅t→t=2.5s ,

that yields the position as:

x (t)=
−4
  2

t
2
+20⋅t  →x (2.5)=

−4
  2

2.5
2
+20⋅2.5→ x=37.5 m

A more direct answer can be given for the same question using information on initial and final
velocities, as well as the acceleration, hence the fourth formula contains only one unknown:

v2
=v0

2
+2⋅a⋅x→102

=202
+2⋅(−4)⋅x→ x=37.5 m
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Exercise 6

Let the velocity of a material particle be given as v (t )=6⋅t−3  (m/s, ha az időt s-ban mérjük).

Determine the acceleration of the particle.

Determine when the particle gets to a distance of 15 m with respect to its initial position at t=0. 

Where does it reach the velocity of 18 m/s (with respect to its initial position)?

Solution

The essential parameters of motion can be read from the velocity function:

v (t )=6⋅t−3 →v0=             , a=             (Mind the signs and units.)

In the second question, time, position, initial velocity and acceleration are either asked or known
but there is nothing to do with current velocity. Therefore, the appropriate formula is as follows:

      = that can be ordered to zero to get a quadratic equation:

0= . Its solution is

t1,2=

Among the two values obtained, only one has a real physical interpretation: t=
In order to answer the third question, let us look for the formula which contains initial and current
(final) velocity, acceleration and position but not the time. Let us plug in all known values to have

, which yields: x=

Example 7

Two vehicles are travelling behind each other at a distance of 15 m, both have an initial velocity
of ( v0=60km/h ) . The one in front brakes and stops after an uniform deceleration of  2m/s2 .
The other starts braking one second later and tries to stop with the same deceleration.

Will the vehicles crash? If yes, then specify when, where and what is the difference of velocities
at the time of crashing.

Solution

The vehicles crash if there is an instant when their position coincide. It can happen either when
both are in progress or when the first one is already stopped. Let us assume that the first scenario
gets realized.

Let us write the position of the leading vehicle as a function of the distance covered if the origin
and the initial instant are set to the place and time where and when it starts to brake, respectively:

x1( t)=
a
2

t
2
+v0⋅t=

−2
 2

t
2
+

60
3.6

⋅t=−t
2
+16.67 t

The position of the trailing vehicle at  the instant  t=0  is  −15 ,  and the vehicle travels at  a
constant velocity through 1 second. Its position when starts braking can be written as

10
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 x2,0=−15+16.67⋅1=+1.67m .

With this in mind, the position of the vehicle as a function of the time in the braking period reads:

x2( t)=
a
2

(t−t 0)
2
+v0⋅(t−t 0)+ x2.0=

−2
 2

(t−1)
2
+16.67⋅(t−1)+1.67 ,

after simplification we get: x2( t)=−t2
+18.67⋅t−16 . Equating this with the position of the other

one: 16.67⋅t−t 2
=−16+18.67⋅t−t2

→ t=8s .

Let us verify now our initial assumption: the velocity of the leading and trailing vehicles are
v1(8)=16.67– 2⋅8=+0.67 m/s  and  v2(8)=16.67−1⋅(8−1)=+2.67 m/s  ,  respectively.  This
means that  none of  them is  fully stopped,  more precisely, both of  them still  proceed  ahead.
(According to our equations, both vehicles should immediately start backwards after an instantaneous stop; therefore,
a negative velocity would mean a crash of a reversing vehicle, which do not match with the problem statement. In
such a case, another question should rather be asked: could the trailing vehicle reach the position where the other one
stopped?) The answer is definitely yes, they will have crashed in 8 seconds after the leading one
starts braking. The difference of velocities at the crash is  +2.67−0.67=2m/s , the crash occurs
at x1(8)=16.67⋅8– 82

= 69.36m measured from the point where the first braking happens.

Exercise 7

Two vehicles start from rest (in the same direction) on a drag race. The first one starts 0,5 seconds
earlier, its acceleration is a1=3 m/s2 . The second one accelerates by a2=3.2m/s2 .

Calculate the advantage of the first car (both for velocity and distance).

When and where the second car hits the first one?

Solution

Let us express the position of both cars in the function of time such that position is measured from
the startline and time is measured from the start of the second car. Thus, the time when the two
functions are equal-valued correspondsto th instant when they meet again.

Motion of the first car:

In addition to the advantage gained by the early starting, it is necessary to know the velocity and
position of the first car when the other starts:

v1,0=  , x1,0=

If time  t starts together with the second car, how the position of the first car can be expressed
interms of t?

x1(t)=
a1

2
t2
+v1,0⋅t+x1,0=

Motion of the second car

Because of the previous setting of initial position and time,
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x2(t)=

When they meet

A time instant t is sought for when x1=x2 :

Let us order the above equation to 0: 0= , whose solution is:

t1,2=

Which of them has a physical relevance? t=    
Where will the cars be then? 

Example 8

Positions  of  a  uniformly  accelerating  particle  are  1m, 4 m, 10m  at  time  instants
t=0s, t=2s, t=4s , respectively. 

Write the position of the particle as a function of time.

Solution

Because of the uniform acceleration,  parameters  a , v0, x0 of the function  x (t)=
a
2
⋅t 2

+v0⋅t+x0

should be determined.

From t=0  it follows that x0=1 m .

In the first and next two-second period, the average velocity of the particle was 
4−1
2−0

=1.5m/s ,

and  
10−4
4−2

=3m/s , respectively. These averages are also the current velocity measured in the

middle of each time period, at time instances  t=
2−0
 2

=1s  and  t=
4−2
 2

=3s . Writing  them

into  the  formula  v (t )=v0+a⋅t ,  a  system  of  two  equations
1,5=v0+a⋅1
3,0=v0+a⋅3

is  generated.

Subtracting these equations one from another, the acceleration is obtained first, then the initial

velocity can be calculated as follows: 
a=0.75 m/s2

v0=0.75 m/s .

Thus, the position of the particle is given by x (t)=0.375⋅t2
+0.75⋅t+1.0 [m ] .
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Exercise 8

Velocities  of  a  uniformly accelerating  particle  are  2m/s, 4 m/s  at  positions  x=1m, x=3 m ,
respectively.

Calculate the velocity of the particle at the position x=5 m .

Solution

Both initial and final velogities, as well as the length is given for the interval. From these data,
acceleration  and  time  required  to  cover  the  given  distance  can  be  obtained  from  separate
equations.

Calculating acceleration

Let us consider the formula not including time parameter as follows:

With reference to this acceleration we have (at x = 5 m/s)

Solution 2 (through calculating time)

In order to get the duration of the first interval, the formula of distance as a function of average
velocity can be used:

Now, the acceleration as the rate of change of velocity reads:

The time when the third point is reached can be deduced from the formula below:

, if ordered to zero we have:

t1,2=

The only time of physical relevance is t=     ,

from which the velocity can be got; v=                         →  v=            

13
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Example 9

An inextensional body (particle) travels by a uniform rectilinear motion such that it  covers 8
metres in 10 seconds. Calculate the time required for the body to get to 43 metres from its point
of departure.

Solution

The (constant) velocity is obtained from the first condition as follows: 8=v⋅10→ v=0.8m/s

From this, the covered distance and the time is x (t)=0.8⋅t→43=0.8⋅t→  t=53.75m .

Exercise 9

An inextensional body (particle) travels by a uniform rectilinear motion such that it covers 10
metres in 8 seconds. Calculate the time required for the body to get to 34 metres from its point of
departure.

Solution

Writing given numbers into the canonical form of position function we get

x (t)=x0+v⋅t  →

The position in the time in question yields the time itself as

14



Basics of Statics and Dynamics eA2

Kinematics of a general motion in a plane

Prpendicular  motions  within  the  plane  of  motion  can  be  dealt  with  as  independent  rectilinear
motions. This principle can also be extended to three dimensions but such 3D problems are not
discussed here. If the motion of a thrown body is analysed without considering the air resistance,
the body will accelerate downwards vertically due to gravity (its sign depends on the direction of
the vertical coordinate axis), while its horizontal velocity component is constant.

Example 1

 

An archer stands at the bottom of an incline of β=10 ° .
He launches an arrow under the angle of α=40 °
with an initial velocity of v0=90 km/h.
Find the position where the arrow hits the ground 
(air resistance is neglected). 

Solution

Without air resistance, the acceleration of the body is exactly  g=9,81 m/s2  downwards. With
respect to the coordinate directions, accelerations are as follows:

ax=0m/s2, a y=−9.81m/s2 .  

In other words,  there is  a horizontal  uniform rectilinear and a vertical  uniformly accelerating

rectilinear motion: x (t )=x0+v x⋅t , y (t)= y0+v0 y⋅t+
a y

2
⋅t2 .

With respect to the coordinate system again, x0= y0=0 .

Projections (components) of the initial velocity along x and y, respectively:

v x=v0⋅cosα=
90
3.6

⋅cos40 °=19.15m/s, 

v0 y=v0⋅sinα=90
3.6

⋅cos 40 °=16.07m/s.

Thus, the positions as a function of time are as follows:

x (t)=19.15⋅t ,  y (t)=16.07⋅t−4.905⋅t2 .

When the arrow hits the ground, y (t)=x (t )⋅tanβ , which can be expressed in terns of time:

16.07⋅t−4.905⋅t 2=19.15⋅t⋅tan 10°   →   12.69⋅t−4.905 t 2=0 .

There are two solutions: t=0s  and t=2.587s , since the trajectory of the arch crosses the line of
the ground in two points. The first time instant indicates when the arrow was launched,  the other
one is important in the solution. The position of the arrow when hitting the ground is

x (2.587)=19.15⋅2.587→ x=49.54 m

y (2.587)=16.07⋅2.587 – 4.905⋅2.5872→  y=8.746 m

Remark:

The time elapsed from the instant of launching can be expressed with the horizontal position: t=x /19.15 , which can

further  be  written  into  the  function  of  the  vertical  position.  The  resultant  expression,  y=
16.07
19.15

⋅x−
4.905

19.152 x2

corresponds to a second-order polynomial; therefore, the trajectory of the arch is parabolic.

1

α
β

v0

x

y



Basics of Statics and Dynamics eA2

Exercise 1

An archer stands on the top of an incline of β=10° .
He launches an arrow under the angle of α=15°
with an initial velocity of v0=100km/h.
Find the position where the arrow hits the ground 
(air resistance is neglected). 

Solution

Without air  resistance, the acceleration of the body is exactly  g=9,81 m/s2  downwards. With
respect to the coordinate directions, accelerations are as follows:

ax=........ m/s2
, a y=........m/s2

(mind the signs)

Now stop for a while and characterize the motion of the arrow:

horizontally: .......................................................................

vertically: .......................................................................

Parametric form of coordinates as a function of time:

x(t )=
y(t )=

where unknown parameters are x0, v0x , y0 , v0 y .

Due to the settings of the coordinate system, x0=............... , y0=.......................

Initial velocity: v0=
100
3,6

=............... m/s , whose (signed) components are

v0x=..27.78⋅.... 15°=.......... m/s ,

v0 y=..27.78⋅....15°=.......... m/s .

Numeric expression of the coordinates as a function of time are as follows:

x(t )=.......⋅t

y (t)=...........⋅t2 ..  .........⋅t
When the arrow hits  the ground:  y (t)=................⋅x(t ) .  Plugging the two above

coordinate  functions  in: ...........⋅t 2 ..  .........⋅t=..............⋅..............⋅t .  Let  us

solve it for t: t1,2=⋰
⋱

What does the solution t=0  mean? ......................................................

Has the nontrivial solution any physical relevance?.........................

If yes, where is the arrow then?
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x( ......)=.......⋅.........=................. m

y (.......)=...........⋅......2 .. ........⋅.......=............. m

Example 2

Soccer fans shoot for goal in the break of the match 
from the midfield: the goal of height H=2.44  
stands at a distance of L=45m.
One of the competitors kicks specially such that 
the velocity vector of the ball upon kicking 
encloses α=40 °  with the plane of the pitch. 
How great the initial velocity of kicking should be in 
order that the ball gets into the goal without a bounce?

Solution

If a coordinate system, with axis x pointing right and y up, is set to the point of kicking, then we
can look for an initial velocity for which x = L occurs simultaneously with a y between zero and
H. For this purpose, time can be expressed as a function of the initial velocity, then it is plugged
in the function of height, for which two inequalities must hold.

Because of the neglected air  resistance,  the ball has no horizontal  acceleration; itt  accelerates
vertically  downwards  by  g.  Taking  the  initial  velocity  of  the  ball  and  the  settingas  of  the
coordinate system into account, both coordinates depend on time as follows:

x (t)=v0⋅cos 40 °⋅t

y (t)=−g
2
⋅t2+v0⋅sin 40 °⋅t

The time elapsed until the ball reaches the vertical plane of the goal is obtained from the first 
equation:

t=    L
v0⋅cos40 °

,

the vertical position of the ball at this time is:

yg=−g
2
⋅(    L

v0⋅cos 40 ° )
2

+v0⋅sin 40°⋅   L
v0⋅cos 40 °

To  avoid  bouncing,  a  condition  yg>0  should  be  satisfied  (mind  the  inequalities  while
ordering):

−     g L2

2 v0
2cos2 40 °

+L⋅tan 40°>0→L⋅tan 40°>      g L2

2 v0
2cos2 40 °

→v0
2>      g L

2 tan 40 °cos2 40 °
,

from which (knowing that tanα⋅cos α=sinα , as well as 2⋅sin α⋅cosα=sin (2⋅α) ):

v0>√    g L
sin 80 °

=√9.81⋅45
 sin 80°

=21.17 m/s .

If the kick is not too high, condition yg<H is satisfied:

3
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−     g L2

2 v0
2cos2 40 °

+L⋅tan 40°<H →L⋅tan 40°−H<      gL2

2v0
2 cos2 40°

→v0
2<      g L

2( tan 40°−H
L )cos2 40 °

which yields

v0<√      g L

2( tan 40 °−H
L )cos2 40°

=√    9.81⋅45

2( tan 40 °−2.44
45 )cos2 40°

=21.89m/s

In summary, if the ball hits the goal directly, initial velocity of the ball must meet the double
condition 21.17m/s<v0<21.89 m/s .

Exercise 2

Find the  initial velocity and angle required 
for the cannonball to hit the castle wall from
L=200m horizontally at a height of H=14 m.

Solution

Deduced from the condition of impact, which component of
the velocity vector is known on impact?

v...=... m/s
How large is the acceleration in the same direction? a ...=........ m/s2

With this in mind, vertical component of the velocity on shot is obtained as follows:

v2=v0
2+ 2a⋅s→....2=v0y

2 ... 2⋅.......⋅.......→ v0y=........ m/s
Total time elapsed from shot to the impact can also be found from the vertical component:

s=a
2

t2+v0t+s0→....=      
  2

t 2+ ........ t   →t 1,2=

(Because of the horizontal  impact,  this  height  is  reached exactly once,  that  is  why two roots
coincide.)

What is the necessary value of horizontal velocity in order that a horizontal distance L could be
covered by the cannonball (with a ...................................... motion) in the calculated time interval?

L=vx⋅t→.........=v x⋅.........→v x=............ m/s
From the two components of velocity on shot, the overall velocity and direction of the shot are

v0=√v x
2+v0 y

2 =√ ..........2+...........2→  v=.............

tanα=
v0 y

v x

=       
       

→  α=.............
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Circular motion

Circular  motion  is  a  special  case  of  plane  motion  when a  point  moves  by keeping a  constant
distance from another given point of the plane. The position of the moving point can be given by an
angle φ of rotation (called also angular displacement) with respect to a fixed initial configuration.
This rotation is measured in radians and considered positive, by analogy to our coordinate system, if
it is counterclockwise.

The rate of change of rotation in time is called angular velocity and denoted by ω. It is provided
with the same sign convention as the rotation itself: it is positive in counterclockwise sense.

The rate of change of angular velocity in time is called angular acceleration and denoted by κ. The
same sign convention is applied as in both preceding cases.

Mathematical  relationships  among  those  three  parameters  of  motion  are  quite  similar  to  those
having already been noted at rectilinear motions: first time derivative of angular displacement is the
angular velocity, first time derivative of angular velocity is the angular acceleration (and hence the
angular acceleration is the second time derivative of the angular displacement). Based on the formal
similarity of differential relationships, the following 'dictionary' can be set up:

         Dictionary rectilinear – angular:

rectilinear motion circular motion Távolságok

x φ s

v ω v

a κ aτ

All rectilinear and angular entries in this dictionary can be coordinated, making thus possible even
to speak about uniform accelerating circular motion where  κ = constant. In such a case, angular
displacement can be obtained as a translation of the formula of the previous lecture as follows:

ϕ (t )=ϕ 0+ω0⋅t+
κ
2
⋅t 2

ω(t )=ω0+κ0⋅t

Exercise: adapt the remaining two formulae as well:

x (t)=
v0+v
  2

⋅t+x0 →       =     +      
     2

⋅     +      

v2=v0
2+2⋅a⋅x →       2=      2+2⋅     ⋅     

Beyond  the  above  parameters  of  circular  motion,  the  motion  can  also  be  characterized  by
expressions of linear distance, velocity or acceleration as shown below. A curvilinear (arc) length
can  be  calculated  along  the  circle  arc  by formula  s (t)=R⋅ϕ ( t) .  The  velocity  will  always  be
tangential, its magnitude is v ( t)=R⋅ω(t) .

Acceleration  behaves  in  a  more  complicated  way. When applied  to  rectilinear  motions,  it  was
defined as the rate of change of the velocity. Although it continues to hold, a completion of the

5
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definition  is  necessary  in  what  also  the  direction  (not  only the  magnitude!)  of  the  velocity  is
concerned. (Recall that velocity is a vector.)

A  change  in  magnitude  only  results  always  in  a  tangentia  componentl  of  acceleration:
aτ (t)=R⋅κ(t ) . This component, according to its positive or negative sign, can point ahead or back
along the circular arc.

A change in the direction results always in a component of acceleration pointing towards the centre

of the circle, its magnitude is an( t)=
v2

R
=ω2⋅R

The vector sum of these two perpendicular components is the resultant acceleraton of the particle.

One can easily see that there are similar differential relationships among tangential parameters to
those  among  angular  or  linear  parameters.  First  time  derivative  of  the  arc  s completed  yields
velocity  v,  its further time derivative corresponds to the tangential acceleration aτ . Our former
dictionary could therefore be extended by a further column containing these three parameters; in
addition, their relationships continues to be valid for any curvilinear motion.

Example 3

A car of mass m=1.2 t passes a hill of vertical radius 
r=800 m with a constant velocity of v=70 km/h.
Find its acceleration at the highest point of the road.

Solution

The car moves along a circle within a vertical plane.
Its normal acceleration is directed towards the centre 
of the circle in any position; the magnitude  of this 

component is an=
v2

r
, the direction is always radial.

Consequently, it points vertically downwards on the top of the hill.

Velocity is v=70/3.6=19.44m/s  that yields an=
19.442

800
→  an=0.4724 m/s2

Remark: It was not analysed in the problem whether or not the forces acting on the car are capable of imposing this
motion: this question is already left for Kinetics. It may happen that high speed or small radius leads to a tensile force
between the car and the road, required for maintaining the car on the circular path. In such a case, the car leaves the
road and starts to follow a trajectory which is independent of the circular path.

Exercise 3

A car with mass of m=1,0 t passes a valley of vertical
radius r=800m with a constant velocity of v=72km/h.
Find its acceleration at the bottom of the valley.

Solution

The car follows a circular path in a vertical plane with velocity v=72
3.6

=......... m/s

Its normal acceleration is directed towards the centre of the circle in each point of the arc. This
direction in the analysed configuration is......................
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The magnitude of that normal component of acceleration is an=
     
    

=......... m/s2
.

How large is the tangential acceleration? Why? aτ=...........

Example 4

How large is the acceleration of a vehicle following
an arc of horizontal radius of R=500 m with a constant
velocity of v=75 km/h?
Find the minimum distance required until the vehicle is
fully stopped with uniform deceleration, if the resultant
acceleration can never exceed 1.5m/s2 .

Solution

If the (magnitude of) velocity is constant, there is only a normal acceleration of an=
v2

R
, directed

always towards the centre of the circle. Numeric value of the velocity converted from km/h into

m/s is v=
75
3.6

=20.83m/s , written into the formula we have an=
20.832

 500
→ an=0.8678m/s2

With  an  uniform  acceleration,  its  tangential  component  aτ  is  constant,  while  the  normal
component decreases quadratically with velocity (its initial value has just been obtained). The
resultant acceleration is calculated by th Pythagorean theorem from the components as follows:
a=√aτ

2+an
2 . This should be smaller than the given limit in any time instant:

√aτ
2+an

2<1.5→aτ
2+an

2<1.52→aτ
2<1.52 – an

2

This latter inequality must also be satisfied for the (previously calculated) maximum of an  , thus,

aτ<√1.52 – 0.86782=1.223m/s2 .  Since rounding of the value has been done downwards,  this
rounded value can be used in further calculations.

From the calculated tangential acceleration, the distance covered from start to the complete stop
can be obtained (with emphasis on that this question does not involve time) from the following
formula:

02=20.832 – 2⋅1.223⋅s→  s=177.4 m

Exercise 4

Find the acceleration of a vehicle travelling along a circular arc 
of radius R=600 m with a constant velocity of v=100 km/h.
The velocity is increased to 120 km/h in 2 seconds by uniform 
acceleration. Calculate the resultant acceleration both at the 
beginning and the end of speed-up.

7
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Solution

How large is the constant velocity in m/s? v=      
3.6

=....... m/s

In which direction does the body accelerate when moving on a horizontal circular path with a 
constant velocity? ..............

How large is that velocity? an=
v2

R
=

        
  

=.................... m/s2

The velocity at the end of  speed-up in m/s is v=120
3.6

=........ m/s

Knowing the duration of speed-up, tangential component of acceleration is obtained as:

v=v0+a⋅t→..........=..........+aτ⋅......→ aτ=........ m/s2

The resultant acceleration at the beginning of speed-up (with respect to the normal acceleration 
obtained for constant (magnitude of) velocity) reads:

a0=√ ...........2+ ..........2 → a0=............... m/s2

Resultant acceleration at the end of speed-up is similarly obtained as:

a1=√ ..........2+ (          2

   )
2

→ a1=.......... m/s2

Motion along a prescribed path

Let geometrically admissible points (forming the trajectory) of the moving particle be given by a
function  r (s)  .  Here the parameter  s specifies  the distance between the  given position  of  the
particle and a fixed initial one, measured along the path (s is called therefore arc length parameter).
With this formalism it is sufficient to specify a function s (t)  in order to describe the entire motion
in time. Based on this function s (t) , further parameters of motion can be obtained as shown in the
following.

The vector of velocity will always remain tangent to the curved path of motion. The magnitude of

velocity is the time derivative of the arc length parameter, that is,  v=
d s
dt

. (A negative value of

velocity refers here to a 'backwards' motion (against increasing s)).

Any motion can locally be interpreted as a  motion along an osculating circle  pertaining to the
current point on the path; therefore, earlier considerations on circular motion still apply. The vector
of acceleration has two components:  tangential acceleration corresponds to the rate of change of

magnitude of the velocity: aτ=
d v
dt

. The change of direction of the velocity is expressed, exactly as

8
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in circular motion, by the normal acceleration, calculated as an=
v2

ϱ , where v is the velocity, ϱ  is

the radius of curvature of the path, being always equal to the radius of the osculating circle. This
component of acceleration is always perpendicular to the path and is directed towards the centre of
the osculating circle.

If the motion is known through both coordinates and local parameters of the path, then the vector of
acceleration obtained from either components ax , a y , az  or components aτ , an  should be the same. 

Newton's laws of  motion

As  a  reminder,  let  us  re-read  the  three  laws  (which  are,  in  fact,  axioms,  but  at  the  scale  of
parameters we use in the description of motions, they can be regarded as laws):

1. Principle of inertial motion. "Every body perseveres in its state of being at rest or of moving
uniformly straight  forward,  except  insofar  as  it  is  compelled  to  change  its  state  by  force
impressed".

2.  Law of Dynamics. "The rate of change of momentum of an object is proportional to the
resultant force acting on the body and is in the same direction", that is, the rate of change of
velocity (acceleration, a) of a material particle is proportional to the force F and the factor of
proportion is the (constant) mass m of the body: F=m a.

3. Principle of action and reaction. "All forces occur in pairs, and these two forces are equal in
magnitude and opposite in direction." It is important to emphasize that two forces in such a
pair act on two different bodies in interaction. In other words, "every action has opposite and
equalent reaction".

Newton  added  some  corollaries  to  these  laws  which  were  needed  to  replace  mathematical
operations that were yet unknown; they are not listed here. 

We continue considering material particles only, so any force acting on a particle should have a line
of action that passes through the referred point. For this reason, at any time instant of the motion, a
coordinate system  xyz can be set with the referred point in its origin. With the help of this, the
overall action of multiple forces can simply be described by a vector sum of forces.

Here and now, only the second law of motion is  applied.  Two main types of problems can be
distinguished: either the forces acting upon a body are known one by one and the parameters of
motion should be extracted from them or it is aimed at finding some forces needed to produce a
given motion. In the former case, forces on the left hand side of the equation  F=ma should be
added, which yields accelerations by coordinate directions, then these accelerations together with
initial values of velocity and position allow us to determine the current position. In the latter case,
the procedure is reversed: first the acceleration is extractd from other parameters of motion, then
unknown force components on the left hand side of F = m a should be calculated. Static problems
involve no motion, so they involve no acceleration either. As a consequence of this, static problems
always require a calculation procedure shown in the latter case.

When this second type of problems is dealt with, i.e., forces are calculated from the acceleration,
there always belong some kinematic constraint to the motion. Constraint in this context means that
the motion of the body is not completely free: it is constrained in some directions. This constraint is
represented by a force of unknown magnitude (those forces will later be called work compatible

9
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with, that is, capable of doing work on the constrained displacement).

Dry (kinetic) friction

If two flat surfaces in contact undergo relative sliding, a phenomenon called kinetic friction can be
observed, that is, the force transmitted by the contacting surfaces can be resolved (i.e., decomposed)
into two components. The component that pushes the surfaces against each other is perpendicular to
the plane of contact and is called therefore  normal force (it  is commonly denoted by  N,  and it
should obviously be a compressive force). The component parallel to the plane of contact is called
force of friction (denoted by Ff). The proportion of these two forces yield the coefficient of friction,
μ=F f /N .

Although several models are known for describing friction and the coefficient of friction, here we
use only simple models when μ is constant (i.e., independent both of the normal force and relative
velocity of the surfaces). This modell is known as Coulomb's model for dry friction.

Example 5

A body with a mass of m=50kg is accelerated by a
horizontal force of F=200N.
Find the minimum length needed for accelerating
the body to a velocity of 13m/s if the coefficient
of friction is μ=0.1?

Solution

The attached figure shows all forces acting on the body.

Because  of  gravity,  the  force  m⋅g=50⋅9.81=490.N  is  directed
downwards,  F points  to  the  right,  N points  upwards.  If  the  body
accelerates,  both  the  vector  of  acceleration  and  the  subsequent
velocity must point to the right; therefore, the friction force Ff has to
point to the left. Since the body moves horizontally, both its velocity
and  acceleration  will  be  horizontal,  with  no  vertical  components.
Newton's second law applies here as follows:

∑ F i→ : F – F f=m⋅ax

∑ F i↑ :N – m⋅g=m⋅0

From the second equation: N=m⋅g=490.5N

Using the condition (law) of friction, F f=μ⋅N=0.1⋅490.5=49.05N

Writing this into the horizontal equation: 200−49.05=50⋅ax→  ax=+3.019m/s2(→)

Positive  sign  confirms  our  assumption on  the  sense  of  acceleration  (to  the  right).  (Since   the
occurrence of sliding has been involved in our assumptions, a negative result would have a completely different
interpretation. E.g., a friction of coefficient five times larger would result in a left-oriented acceleration, but this
would reverse the velocity and therefore would contradict with the assumed sense of friction force. This contradiction
is resolved by noticing that in this latter case, in fact no motion would occur: its acceleration would be zero instead,
and friction force would be limited just to balance the force F attempting to move the body. If it did not start from
rest, however, it would be possible a velocity to the right and acceleration to the left simultaneously.)

Let us proceed with the solution of the kinematic part of the problem. Acceleration is constant, so
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formulae of the rectilinear uniformly accelerating motion can be used:

v2=v0
2+2ax⋅x→132=02+2⋅3.019⋅x

Ennek megoldásából a gyorsításhoz szükséges út: x=27.99m .

Exercise 5

What time does it take to stop a body of m=50 kg 
applying a horizontal force of F=200 N if the initial
velocity is 13 m/s and the coefficient of friction is μ=0.1?

Solution

In order to solve the problem, one should calculate the acceleration and then the time required
until stop.

Draw in the sketch all forces acting upon the body:

(Mind the sense of velocity when assuming the sense of

the friction force)

The force of gravity can directly be obtained from the mass:

m⋅g=....⋅.....=......... N
The components of acceleration are the following:

a y=...... sense (arrow) of the horizontal component: (..........)

Write two scalar equations of Newton's second law (and solve them immediately if possible):

∑ F iy : ............    .....................=m⋅0

∑ F ix : ............    .....................=   m⋅........
Calculate friction force from the normal force: 

F f=μ⋅N=........⋅.........=.......N
Writing this into the horizontal equation we have:

.........    ...........=50⋅......→  ax=............. (...)
The type of motion is :.................................................................. (mind the constant acceleration)

The formula containing both initial and final velocities and the acceleration reads:..........................

Numerically: 0=13 ....   ........⋅t→  t=........... s
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Example 6

A body of mass of m=15 kg is pulled by a horizontal force
F=120 N against a slope of inclination α=30 ° .
The initial velocity at the bottom of the slope is v0=3 m/s.
Find the velocity at the top of the 10-m long slope.
(Friction can be neglected.)

Solution

The attached figure shows all forces acting on the body.

Because  of  gravity,  the  force  m⋅g=15⋅9.81=147.2N  points
downwards,  F points  to  the  right,  N points  to  the  left  and
upwards. Since the body moves along the slope, both the vector
of acceleration and the subsequent velocity will be parallel to it.
Newton's second law can be written here either in horizontal and
vertical directions as usual:

∑ F ix : F – N⋅sinα=m⋅acosα

∑ F iy :−m⋅g+N⋅cos α=m⋅a sin α

or in directions parallel and perpendicular to the  slope:

∑ F i↘:m⋅g⋅cosα – N+F⋅sinα=m⋅0

∑ F i↗:−m⋅g⋅sinα+F⋅cosα=m⋅a

Out of the four equations, only two are needed. It is easy to see that in each of the first two
equations  both unknowns appear, while the last two equations contain a single unknown each. Its
physical  reason  is  that  their  directions  are  perpendicular  to  the  normal  and  friction  forces,
respectively, making them to disappear  from the  respective equation.  Of course,  the  solution
obtained from either system of equations should be unique but it is easier now to adopt the latter
choice: −147.2⋅sin 30°+120⋅cos30 °=15⋅a→  a=2.022m/s2(↗) .

Plugging this velocity into the formula of uniform accelerating motion we get:

v2=32+2⋅2.022⋅10→  v=7.031m/s(↗)
Remark 1: strictly speaking, the mathematical problem could have resulted also in a solution of  -7,031 because of
the square root operation, but such an answer would have been associated with a negative time, being out of scope of
this problem.

Remark 2: if friction had had not been neglected in the solution, its parameters would have appeared in the equations
except for the one perpendicular to the slope. For that reason, the normal component could have been calculated as
we did above, then the corresponding friction force could have been used in the parallel equation. In such a case, an
occasional negative root is not physically acceptable not simply because of the negative time but rather since the
obtained  negative  velocity  would  imply  a  contradiction  due  to  the  oppositely  directed  friction  force  (and
acceleration).
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Exercise 6

A body of mass of m=15kg is sliding down a slope
of inclination of α=30° .  Its initial velocity is v0=7m/s
and the body is decelerated by a force F=120N.
Calculate the distance required until it stops if
the coefficient of friction is μ=0.15.

Solution

In order to solve the problem, one should calculate the acceleration and then the distance required
until stop.

Draw in the sketch all forces acting upon the body:

(Mind the sense of acceleration when assuming the sense of

the friction force)

The force of gravity can directly be obtained from the mass:

m⋅g=....⋅.....=......... N
Write four possible scalar equations based on Newton's second law:

∑ F iy : ............   .....................   .....................=   m⋅.......

∑ F ix : ............   .....................   .....................=   m⋅.......

∑ F i↗: ............   .....................   .....................=  m⋅.......

∑ F i↘: ............   .....................   .....................=  m⋅.......
Solve the equation with one unknown only:

N=............ N
Calculate friction force from the normal component: 

F f=μ⋅N=.....⋅......=....... N
There is only one unknown left, calculate this by solving any equation:

......... ...............................................→  ax=............. (...)
The type of motion is :.................................................................. (mind the constant acceleration)

The formula with both initial and final velocities, distance and acceleration reads:..........................

Numerically:  02=72−2⋅......⋅s   → s=............ m
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Notes:
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Application of Newton's laws of motion in planar problems

This lecture will be dedicated to the calculation of resultant forces acting on a body, completed by
the calculation both of the accelerations due to those forces and/or of forces preventing the body
from acceleration. In contrast to the past lecture, the material particle will be constrained to a plane
instead of a line henceforth.

Example 1

Calculate the forces acting on a thrown body regarded
as a material particle if the air resistance is neglected.

Solution

By the neglection of air resistance, only the gravitational force acts  on
the body (downwards) with a magnitude of m⋅g .

This force is always directed downwards vertically and its magnitude
depends on mass m of the body as well as the gravitational acceleration.

This latter parameter in general depends on both position and time; in this course it is uniformly 
taken as g=9.81m/s2 .

Exercise 1

Determine the resultant of forces acting on a projectile shot by a cannon.
The cannonball is a solid sphere made of steel whose diameter is 25 cm and
density is ϱ=7850 kg/m3 , air resistance can be neglected.

Solution

How many forces are taken into accound if air resistance is neglected?.................................

The magnitude of gravitational force is m⋅g .

How large is  the volume of  the sphere? V=
4
3

π R3=
4
3

π ........3=............cm3

The mass of the cannonball is m=ϱ⋅V=7.85⋅...............=............
The gravitational force acting upon the cannonball is m⋅g=..........⋅9.81=............

Example  2

A ski jumper sinks at a given instant with a velocity of v=90km/h 
under an angle α=7 °  with respect to the horizontal direction.
Air resistance is represented by a force opposed to the velocity
and possessing a magnitude of c v2

ϱ , where c=0.3 m2 is a
factor dependent on shape and extension and ϱ=1.3kg/m3  is
the air density. Calculate the resultant force acting on the ski jumper,
as well as the acceleration if the mass of the jumper is m=75kg.
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Solution

In the position sketched in the above figure,  two forces act on  the
jumper, see anothe figure to the right. The (vertical) force of gravity has
a magnitude of G=m⋅g=75⋅9.81=735.8N(↓) .

The force due to air resistance:

E=0.3⋅(90
3.6 )

2

⋅1.3=243.8 N(↖)

The resultant force acting on the jumper is

R=G+E=[ 0
−735.8]+[−243.8⋅cos7 °

243.8⋅sin 7 ° ]→ R=[−242.0
−706.1 ]N ,

its magnitude, |R|=√242.02
+706.12

→ R=746.4 N(↙) ,

its angle to the horizontal is tan αR=
706.1
242.0

→ αR=71.08° .

The acceleration can be calculcted from the resultant force. With reference to the vector equation
R=m⋅a , the vector of acceleration points to the left and downwards and encloses an angle of 

71.08° with the horizontal and its magnitude is

746.4=75⋅a→ a=9.952 m/s2 .

Two components of acceleration could also be obtained directly, using two resolution equations 
(for convenience, in directions x and y). Positive orientation can be set arbitrarily in each equation
but it is common to choose the positive direction along the positive sense of acceleration and to 
write the signs of other terms accordingly. An advantage of this choice in dynamical problems is 
that one cannot miss the sign of the right-hand-side term ma since it is always positive. In the 
present case, let the acceleration be assumed to point downwards vertically and to the right 
horizontally, then write two resolution equations in this sense as follows:

∑ F i↓ :735.8−243.8⋅sin 7 °=75⋅ay   → a y=9.415 m/s2(↓)

∑ F i→ :0−243.8⋅cos7 °=75⋅ax   → ax=−3.226m/s2
(←)

Positive or negative signs of solutions refer always to that effective direction  (sense) of  the 
calculated variable agrees or contradicts, respectively, with their assumed sense. Thus, the 
resultant acceleration points downwards and to the left: it is explicitly emphasized by the arrow in
brackets behind the numeric result..

Starting with these components of acceleration and using the Pythagorean theorem as well as the 
arctan function, the same results are obtained.

Exercise 2

The velocity of a ski jumper is inclined at an angle α=22 °  to the
horizontal and its magnitude is v=84 km/h just before landing.
The force due to air resistance is c v2ϱ , opposed to the velocity,
where c=0.25m2  is a factor dependent on shape and extension,
ϱ=1.3 kg/m3  is the density of air. The jumper weighs m=75 kg.
Find the resultant force and acceleration acting on the ski jumper.
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Solution

The velocity vector of the jumper is shown in the figure to the right.

Draw into the figure the following forces:

- vertical force G due to weight,

- the force E of air resistance.

The force due to weight is G=m⋅g=

Velocity in m/s: v=
84
3.6

=

The air resistance is E=0.25⋅23.332⋅1.3=
The jumper is acted upon by the sum of two previous forces:  R=G+E . Draw also the two
assumed components of resultant force  R into the figure,  then write and solve horizontal  and
vertical resolution equations:

∑ F ix : ...Rx=.......+......⋅.......... →Rx=

∑ F iy : ...R y=.......+......⋅.......... →R y=

The magnitude of the resultant is R=√R x
2
+R y

2
=√ .......2

+......2
=

and it is inclination to the horizontal is tan αR=
      
  

→αR=

In order that further calculations should not be influenced by (occasional) earlier miscalculations,
acceleration  is  obtained  from two  resolutions  of  the  vector  equation  G+E=m⋅a .  Let  the
components  of  a be  assumed  to  point  left  and  downwards.  In  order  to  prevent  the  sign  of
acceleration  from  being  confused  on  the  right  hand  side,  let  these  assumed  directions  be
considered positive in the resolution equations:

∑ F i↓ :+..........−.............⋅..........=.............⋅a y

∑ F i← :+..........+.............⋅..........=.............⋅ax

Solving the above equations one by one (mark also the effective direction in brackets):

a y=................... m/s2
(  ) ax=................... m/s2(   )

The magnitude of acceleration is

a=√........2
+ ...........2

=

direction: tgαa=
    
    

→αa=

Safety check:
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Total force generating acceleration is m⋅a=............⋅...........=................... . 

Do this force and the resultant coincide? If not, why and in what amount?

Do directions of the resultant force and acceleration coincide? If not, why and in what amount?

Dry (static) friction

In some cases, two bodies in contact do not have relative motion in their contact point(s): they do
not slide with respect to each other. This phenomenon is called static friction (in contrast to kinetic
friction discussed in the previous lecture), which will be described here by the simplest model of
dry friction introduced by Coulomb. Its main assumption is that two surfaces do not move on each
other unti the proportion of fricion force and normal force component does not reach the coefficient
of friction; it can formally be written by inequality |F f|/N≤μ . (Or, in other terms, if the friction
force does not reach the product of normal force and the coefficient of friction, |FS|≤μN .) Static
friction force is directed always against the motion it prevents, but otherwise it can be considered as
a free parameter until it reaches its limit. The minimum value of coefficient of friction in order to
prevent the surfaces from sliding can therefore be found from the above inequalitiy.

Road vehicles proceed by rolling wheels. Its dynamics are not discussed here but it is obvious that
friction force between wheels and the road must remain static to ensure the driver's control over the
vehicle instead of a slipping governed just by the inertial mass and kinetic friction force (this latter
way of control requires considerably more space than is actually available on roads...).

Example 3

A vehicle of m=1.5 t, modelled as a particle, proceeds 
with a velocity of v=90 km/h along an arc with radius 
R=600 m.
Calculate the forces acting on the vehicle.
Is a static friction coefficientμ=0.2 sufficient to prevent
the vehicle from slipping?

Solution

The result can be obtained in three steps. 

In the first round, components of the net acceleration of the body should be calculated; in the
second, unknown forces should be determined from accelerations using Newton's second law.
Finally, the last question can be answered considering the law of friction.

Accelerations

The vehicle follows a circular path in a horizontal plane, so it has neither vertical nor tangential
acceleration. The only nonzero component is the normal acceleration directed towards the centre
of the circle:

an=
v2

R
=

(90 /3.6)
2

   600
=

252

600
=1.042m/s2

Forces

The  resultant  force  acting  on  the  body can  be  resolved  into  three  components.  Gravity acts
vertically downwards with a magnitude of m⋅g=1.5⋅9.81→  m⋅g=14.72kN .

4
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Let the vertical component of the force exerted by the road on the vehicle be denoted by N, this
force  is  directed  upwards.  A  vertical  resolution  equation  of  Newton's  second  law  reads:
m⋅g – N=m⋅0 , where forces directed downwards are taken as positive; zero value on the right

hand side is due to the above-referred zero vertical acceleration. Solution to this problem is

N=m⋅g→ N=14.72kN (The positive sign confirms that N points upwards indeed.)

The horizontal component of the force exerted by the road on the vehicle comes from friction and
will  therefore  be  denoted  by  Ff .  Since  this  is  the  only horizontal  force  in  the  problem,  its
direction must coincide with that of the acceleration, pointing towards the circle centre. Writing a
resolution equation of Newton's second law in this drection we have

F f=m⋅an=1.5⋅1.042→ F f=1.563 kN

It is emphasized that forces exerted on the vehicle by the road are the consequence of an interaction between the
vehicle and the road. But, according to Newton's third law, the road itself is acted upon the negatives of N and Ff ; that
is, a force that is  directed downwards with magnitudel 14.72kN and another but horizontal  one with magnitude
1.563kN and with a radial outwards direction.

All the above calculation is based on the assumption of static friction. The given normal force 
component, however, implies an upper limit for the friction force component :

F f
max

=μ⋅N=0.2⋅14.72=2.944 kN . Since it wa s shown that the analysed motion can be 
ensured even by a smaller force (1.563<2.944), the answer for the last question sounds 'yes, it is'.

This latter question could have also been decided by the proportion F f /N  as well:

1.563
14.72

=0.1062 . This value must not exceed the static coefficient of friction. This condition is

satisfied (0.1062<0.2), hence one gets to the same conclusion as before.

Exercise 3

A vehicle of m=1.8 t, modelled as a particle, proceeds 
with a velocity of v=30 m/s along an arc with radius 
R=500 m, then stops in t=8s with uniform deceleration.
Calculate the forces acting on the vehicle when it starts braking.
Is a static friction coefficientμ=0.4  sufficient to stop the vehicle?

Solution

In the solution process, accelerations and related forces should be determined, then the condition
of friction checked.

Accelerations

Which is the plane the vehicle moves in? ..............................................................

How large is the acceleration in a direction perpendicular to that plane? a...=..... m/s2

How large is the tangential acceleration? ...=....+ a τ⋅... →a τ=........ m/s2

How large is the normal component of acceleration when the braking starts?

an=
....2

....
=...... m/s2

5



Basics of Statics and Dynamics eA3

In that time instant, the net acceleration of the vehicle is

 a=√ an
2
+ aτ

2
=√ .......2

+ .......2
=......... m/s2

Forces

Which of the forces acting on the vehicle has a vertical component? ....................................

The weight of the vehicle is m⋅g=..................
The vertical resolution according to Newton's second law:

...........−............=m⋅......→N=..............
The only one horizontal force exerted on the body is the force of friction.

The resolution equation along the direction of acceleration based on Newton's second law:

F f=......⋅.....→F f=.......... kN
What is the maximum for friction force with the given value of coefficient of friction?

F f
max

=μ⋅N=..............⋅...........=...........................kN
Compared to the coefficient of friction required for the prescribed motion, does that coefficient of
friction suffice?............................

Example 4

A body of mass M=10kg is whirled on a chord of
length l=1.3m in a vertical plane. At a given instant
the chord encloses an angle of ϕ=10°  with the vertical
direction and moves with v=15m/s just having left the
bottom point.
Calculate the acceleration of the body and the force in
the cable in that position. Find all missing parameters
of the circular motion.

Solution

In  the  position  specified  by  the  question,  two  forces:
weight and cable force are acting on the body as shown in
the attached figure. The former one is directed downwards
vertically with magnitude  G=M⋅g=98.1 N . The cable
force always follow the direction of the cable and points
now therefore towards the circle centre with an unknown
magnitude  S.  These  to  forces  together  generate
accelerations required for the circular motion: normal and
tangential components which are shown in dashed lines in
the figure.

The normal acceleration is obtained as follows:  
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an=
v2

R
=

152

1.3
=173.1m/s2 .

The tangential acceleration is unknown, its direction is assumed according to the figure.

Newton's second law implies the existence of two independent equations. These could be written
along the common horizontal and vertical resolutions:

∑ F iy :S⋅cos10°−98.1=10⋅(173.1⋅cos 10°+aτ⋅sin 10 °),

∑ F ix :S⋅sin 10°+0=10⋅(173.1⋅sin 10°−aτ⋅cos10 °) ,
,

but a rotated coordinate system can also be used where one equation is written in radial (positive
if points to the right and up), the other one in tangential (positive if points left and up) directions:

∑ F i n: S−98.1⋅cos 10°=10⋅173.1 ,

∑ F i τ : 0−98.1⋅sin 10°=10⋅aτ .

Any two out of the four equations written above yields the same solution; the simplest choice is to
work with the last two, since they have a single unknown each. From them we have

S=1828N , aτ=−1.703m/s2
(↘)

Missing parameters of the circular motions are the angular velocity and the angular acceleration.
The first one can be calculated from the velocity and the radius of the circle, deciding on its
direction by inspection:

ω=v / l=11.54 rad/s ( )↷ .

Angular acceleration can be obtained from the tangential acceleration and the radius again. The
direction of tangential acceleration implies a counterclockwise angular acceleration:

κ=aτ /l=1.31 rad/s2
(↶)

Exercise 4

A body of mass M=10kg is whirled on a chord of
length l=1.3m in a vertical plane. At a given instant
the chord encloses an angle of ϕ=10°  with the vertical
direction and moves with ω=6 rad/s just before
reaching the top point.
Calculate the acceleration of the body and the force in
the cable in that position. Find all missing parameters
of the circular motion.

Solution

Firstly, let a sketch of the whirling body be drawn;
display all forces acting on the body which are as follows:

- weight G ,

- cable force S ,

as well as two components of the acceleration:

- the normal component ( an ),

- the tangential component( aτ ).
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From these four data it is known or can directly be calculated:

- the weight: G=m⋅g=...........⋅..........=........... N

- the normal acceleration: an=ω2⋅l=..........2⋅...........=............ m/s2

Out  of  the  two  further  unknowns,  cable  force  is  asked  by  the  problem,  and  the  tangential

acceleration  is  directly  related  to  angular  acceleration:  aτ=........⋅........ ,  that  is,  by

getting the former one, the latter one can also be determined.

In orde to calculate the two unknowns, two scalar projections (resolutions) of the vector equation
R=m⋅a  should be set up and solved. Those can be written along the horizontal and vertical

direction, as well as in radial and tangential directions. In the present case, all four equations are
written,  but  since it  is  always practical  to deal with equations in  only one variable,  it  should
always be considered for each equation which out of all unknowns (i.e., S and aτ ) will appear
in the equation and which ones will not.

Horizontal resolution; unknowns excluded:....................., unknowns included:.....................

∑ F i → : ............... .... .................=..........⋅(...............    .............)
Vertical resolution; unknowns excluded:....................., unknowns included:.....................

∑ F i↓: ............... .... .................=..........⋅( ...............   .............)
Radial resolution; unknowns excluded:....................., unknowns included:.....................

∑ F i↘: ..................... .... ..........................=..........⋅...................
Tangential resolution; unknowns excluded:....................., unknowns included:.....................

∑ F i↗: ..................... .... ..........................=..........⋅...................
Solve the two simplest equations:

S=.................. N

aτ=........... m/s2
(...)→ κ=............... rad/s2

(...)
Remark: A negative sign in the cable force would mean a conpressed cable. This cannot happen in reality, that is why
either the body should be whirled quicker or a rod should be used instead of a cable.

Angular velocity at the specified instant: ω=
v
l

=
     
     

=......... rad/s (...)

Angular acceleration at the specified instant: κ=
a...

l
=

     
     

=......... rad/s2
(...)

Balancing

Recall the comments of the past lecture on two kinds of problems with forces and accelerations:
either accelerations caused by given forces are sought or, conversely, forces generating a prescribed

8
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acceleration are looked for. A special type of the latter problem is when the prescribed acceleration
is zero (that, is, the right hand side of the equation of Newton's second law is zero). If the initial
velocity is also set to zero, then the body remains in rest and will be in equilibrium. Consequently,
problems of this form are called balancing problems. 

The simplest problem of balancing is when the equilibrium is maintained by a single
force. In such a case only one force should be added to the resultant of all active forces
exerted on the body, such that the resultant of the previous (partial) resultant and the
balancing force should be zero. In other terms it means that the balancing force must be
the negative of the resultant of all other forces.

For example, if one wants to balance a bucket of a weight of G=0.2kN  by a single
force C, then the partial resultant of active forces will be the vertical force G pointing
downwards.  In order that  it  can be balanced, one needs a force of dimension of  G
having the same line of action but being directed upwards; that is, C=0.2kN  is obtained.

Example 5

A bucket of weight G=0.2kN is held in equilibrium by two cables
as shown in the figure. Find the forces needed for balancing.

Solution

In the case of equilibrium, the mass is always  multiplied by zero 
on the right hand side of the equation of Newton's second law. 
Equilibrium equations can be written in horizontal and vertical directions:

∑ F ix :−A⋅cos 30°+B⋅cos 40°+0=0

∑ F iy : A⋅sin 30 °+B⋅sin 40°−0.2=0

B (or A) can be expressed from the first equation and can then be plugged into the second one:

∑ F iy : A⋅sin 30 °+A
cos30 °
cos 40 °

⋅sin 40 °−0.2=0→ A=0.1630 kN(↖)

∑ F iy :B
cos 40 °
cos 30°

⋅sin 30 °+B⋅sin 40 °−0.2=0→ B=0.1843 kN (↗)

Another  option  for  writing  and  solving  such  a  system of  equations  is  when  one  looks  for
equations in only one variable. In our example it means that an equation that is set up to be solved
for  A should not contain any component of  B. If the system of forces have a common point of
intersection  (such  forces  are  termed  concurrent  forces),  it  is  sufficient  to  write  and  solve
resolution equations only. The equation from which  B is completely excluded is the resolution
perpendicular to B.; that is written along a direction at an angle of 40° to the vertical (y) axis. It is
also needed to attach a positive sense to the resolution equation; let the direction to the right and
downwards be positive:

∑ F i↘:−A⋅cos20 °+0.2⋅cos 40 °=0→ A=0.1630N(↖)

In order to calculate force B, a resolution not including A; therefore, perpendicular to A, should be
set up and solved. This resolution is written along an axis at an angle of 30° to the vertical axis;
among the two possibilities, let the direction to the right and upwards be chosen as positive:

∑ F i↗: B⋅cos 20°−0.2⋅cos 30°=0→ B=0.1843 N(↗)

9
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New and old results are, of course, identical; assembling the equations required a bit more 
thinking but their solution was considerably faster in the latter way.

Exercise 5

A bucket of weight G=0.2kN is held in equilibrium by two cables
as shown in the figure. Find the forces needed for balancing.

Solution

Because of the balancing problem, Newton's second law should be written
in a form  R=0, which means that two resolutions of the vector equation
G+A+B=0 should be written and solved for two unknown magnitudes. It
can be done by setting up a horizontal and a vertical equation (mind the signs and components),
that can then be solved:

∑ F i , x : 0−...........⋅..........+ ..............⋅...........=0

∑ F i , y : ...0.2  .. ...........⋅..........  ..  ..............⋅...........=0
As a first tep to the solution, let some unknown be expressed from the first equation in terms of

another:  ......=.........⋅
      
     

=.........⋅.... ,  and  let  it  be  plugged  into  the  second

equationl: −0.2+...........⋅..........+..............⋅...........=0 .

Its solution is ....=........... kN    , which can be written back into the formula expressing

the relationship between unknowns, hence ....=........... kN .

This problem could also be solved in an alternative way just by the use of two equations in one

variable each. In order to get force A, an equationthat does not include .....  should be chosen.

This direction encloses an angle of ..... with the vertical axis. Write the resolution along this

line where the direction to the right and downwards is taken positive. Solve now the equation:

∑ F i↘ :+0.2⋅......−A⋅.........=0→A=.................
Calculation of force  B is  done independently. The equation not including  B is  looked for;  its

direction encloses an angle of  .....  with the vertical axis. The positive sense is fixed in the

direction to the right and upwards. Solve this equation as well:

∑ F i↗:−0.2⋅......+B⋅.........=0→B=.................
(Do not forget to specify units and effective senses (arrows) deduced from plus or minus signs at
the final results.)

If one wants to balance a body in 2D by three concurrent forces of known line of action, then the
solution to that problem is not unique. This feature is called statical indeterminacy or  hyperstatic
behaviour and will be discussed later.

10



Basics of Statics and Dynamics eA3

Example 6

A bucket of weight G=0.2kN is held in equilibrium by
three cables as shown in the figure. Show some possible
solutions using the results of preceding examples.
Determine balancing forces A  and C  in function of force B .

Solution

Two solutions to the problem have already been given earlier.

The figure preceding Example 5 can be completed by zero forces 
(i.e., forces of zero magnitude), A and B without the equilibrium getting modified, that is, force 
triplets A=B=0 kN, C=0.2 kN as well as A=0.1630kN ,B=0.1843kN ,C=0kN

are  both  possible  solutions  to  the  problem.  (They  can  easily  be  checked  if  plugged  into
equilibrium equations to be written just below.)

Generally speaking, equilibrium equations (resolution equations) can be written in horizontal and
vertical directions:

∑ F ix :−A⋅cos30 °+B⋅cos 40 °+C⋅cos 90°+0=0

∑ F iy : A⋅sin 30 °+B⋅sin 40°+C−0.2=0

'Luckily', coefficient of C in the first equation is zero, so A can be expressed from it as follows:

A (B)=B⋅cos 40°
cos 30 °

→  A (B)=0.8846⋅B ,

then it can further be used in the second equation:

0.8846⋅B⋅sin 30+B⋅sin 40 °+C – 0.2=0→  C(B)=0.2– 1.085⋅B

In order that the equations can be solved more easily, it can come quite in handy towrite an 
equation not including A when looking for C. From the two possibilities, let an axis at an angle of 
30° to the vertical with a positive sense to the right and upwards be chosen:

∑ F i↗: B⋅cos 20°+C⋅cos 30°−0.2⋅cos30 °=0→ C(B)=0.2−1.085⋅B

The results are, of course, identical.

Exercise 6

A bucket of weight G=0.2 kN is held in equilibrium by
three cables as shown in the figure. Show some possible
solutions using the results of preceding examples.
Determine balancing forces B  and C  in function of force A .

Solution

Equilibrium  of  four  forces  should  be  ensured,  that  is,  the  vector
equation G+A+B+C=0 should be satisfied.

Completing the forces in Exercise 5 by a force C of magnitude zero (zero force), the equilibrium is

not modified, thus, one possible solution is: A=........ N , B=........ N ,C=0 N .

With similar arguments, if force G was balanced by a single force C, then the other two forces will

be zero each: A=...... N , B=...... N ,C=200 N .

11
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In addition to these two cases shown, there are still  infinitely many possibilities; they will be
expressed in a form of a function. Let the independent variable of that function be the force  A,
hence  only forces  B  and  C are  considered  unknowns.  For  the  calculation  of  force  B,  let  the
resolution not including C be written down. This is obviously the resolution perpendicular to C:

∑ F ix : .........  .. A⋅......  ..  B⋅.........=0 ,

whose solution reads B (A )=..................................
For the calculation of force C, a resolution not including B (that is, a resolution perpendicular to

B)  should be applied;  this  direction is  at  an angle of  .....  from the vertical  axis.  Let  the

direction to the right and down be chosen positive, therefore

∑ F i↘: .. 0.2⋅.....  ..  A⋅......  ..  C⋅......=0 ,

whose solution is again: C (A)=.................................. .

This solution clearly demonstrates the advantage of writing equations in only one variable. Mind
the difference the use of horizontal and vertical equations instead would have been made:

A horizontal resolution would have the same appearance as before, hence it is not repeated here.
The vertical resolution with a positive direction taken upwards reads:

∑ F iy :−0.2+A⋅.......+B⋅..........+C⋅..........=0
Although  thee  is  no  need  here  for  solving  a  parametric  (!)  system of  two  equations  in  two
variables because of the special direction of force  C (i.e.,  B can be expressed directly from the
horizontal resolution equation, as has been precisely done above). This expression of B should be
plugged into the vertical resolution to have

∑ F iy :−0.2+A⋅.......+(........................)⋅..........+C⋅..........=0

Finally, it should be solved for C: C (A)=..................
Observations and remarks:

The sign of the result in all preceding examples gave a unique indication on whether or not the sense (direction) of the
obtained variable obeys the previous assumption. This confirmation or refutation of the assumption was explicitly
marked by bracketed arrows after numeric answers in all earlier occurrences. Now the sign and thus the effective
sense of the result depends on the (signed) magnitude of A, that is why it is not given here.

The three reactions maintain equilibrium with G, or in other words, their sum is the negative of G: a vertical 0.2-kN
force directed upwards vertically. This property was found to apply for two (called trivial) solutions as well (i.e., when
A and B were zero and C was equal to −G, or when C was zero and A, B were not). Any linear combinations of these
two equilibrium force systems yield also an equilibrium force system, and original value of G (the only active force)
is exactly restored when the sum of coefficients in the combination is 1. For example, the sum of 0.3 times the first
trivial solution and 0.7 times the second trivial solution also satisfies the condition of equilibrium. Let us check it...

12
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Introduction

In some problems of kinetics studied so far, some results obtained in the course of solution are
disregarded by the problem statement: some initial and final parameters are asked directly. In such
cases, the use of so-called theorems of change come in handy. It can be stated as a basic principle
that  a  theorem  of  change  of  something declares  the  change  of  value  of  something  (i.e.,  the
difference  between latter  and former  values)  to  be  equal  to  another quantity. (Hopefully none
asserts that a theorem of change of pudding would state that the change of pudding equals the
difference between latter and former values of the pudding.)

Theorem of change of linear momentum

Definition: The vector obtained as a product of mass and the velocity of a material particle is called
linear momentum of the particle.

Definition: The impulse (vector) of a force on a material particle is the time integral of that force
(vector).  (The  integral  of  a  vector  is  a  vector  composed  of  integrals  of  each  of  the  scalar
components of the vector. If the force is constant, this integral reduces to the product of the force
and the length of time interval.)

Theorem: The change of linear momentum of a particle caused by a force (vector) in a time interval
equals the impulse of the force. It is also known as the impulse–momentum theorem.

Since in our problems the mass does not change, the above theorem can be reduced to the form:

m v2– mv1=∫
t 1

t 2

Rd t , or, with a constant force, m⋅(v2−v1)=R (t2−t1) .

Usage

As clearly seen from the formula, there is neither acceleration nor distance (or position coordinate)
in it; consequently, the theorem can be used in any problems where the referred quantities do not
appear either among given or requested parameters.

Example 1

A material particle of mass of 20 kg follows a rectilinear path with a velocity of v0=12 m/s.
Find the force magnitude required to double that velocity in 9 seconds.

Solution

Since it has been doubled, the final velocity (i.e., in the end of the time interval) is known:

v=2⋅v0=24m/s

The problem statement does not refer either to the acceleration or to the distance covered, hence
the equation in a single unknown variable can be written using the theorem of change of linear
momentum. However, only a scalar equation along the direction of motion is considered:

m(v – v0)=F⋅t→20⋅(24−12)=F⋅9

(In this scalar equation, direction of both velocities and forces are reflected by their signs: the
positive sense is set to the sense of motion; force F is assume to point along the velocity.)

The equation solves to F=+26.67N .

Remark: The problem could also be solved by determining first the acceleration from the change of velocity, then by
finding the force from Newton's second law. Altogether, the method presented here is far more elegant.

1
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Exercise 1

A body of mass of 2.8 t is accelerated from rest for 5 minutes by a constant force F=7.5 kN. 
Find the velocity reached by the body at the end of the period.

Solution

Collect all parameters given in the problem specification:

Which quantities related to the motion are disregarded by the problem?

The theorem of change of linear momentum reads

m⋅(v−v0)=F⋅t→         ⋅(v−     )=       ⋅       
It solves to

v=

Example 2

A material particle of mass of 25 kg is thrown in an oblique direction. Its velocity becomes just 
horizontal in two seconds after start. 
Determine the velocity (by magnitude and direction) on start if the horizonal component of
velocity is known to be v x=5 m/s.

Solution

Let the vertical component of velocity be denoted by v0 y . It must have an upward direction,
otherwise  a  horizontal  velocity  would  never  be  reached.  Write  the  vertical  resolution  of  the
theorem of change of linear momentum with a positive sense pointing up (it is shown by the label
written at the beginning of the equation):

↑:m⋅(v – v0)=(−m⋅g)⋅t→25⋅(0 – v0 y)=−25⋅9.81⋅2

The solution is

v0 y=19.62 m/s

Once both its horizontal and vertical components are known, the magnitude of the initial velocity

v0=√vx
2
+v0 y

2
=√52

+19.622     →  v0=20.25m/s

The direction is specified by the angle it makes with the horizontal axis:

tanα=
|v0 y|

|vx|
=

20.25
  5

   → α=76.13 °

Exercise 2

A material particle of mass m=80kg moves in a horizontal plane xy  under the action of a 
of a single constant force F . The velocity in the time instant t=2  equals 

v0=[ +10
−8 ]m/s, while the velocity is v=[−10

+8 ]m/s at t=8 s.

Determine force F .

Solution

2
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Knowing both the initial and final velocities, write equations of the theorem of change of linear
momentum in direction of axis x, as well as axis y:

m⋅(vx – v0x)=F x(t−t 0)→  
m⋅(v y – v0 y)=F y (t−t 0)→  

Its solution gives the components of fthe force under consideration:

F0 x=  
F0 y=  

which can be arranged even in a vector as: 

F=[               ]
Example 3

A body of m=10 kg is released from rest at the top of a slope of inclination α=25 ° . The body 
starts sliding down with a uniform acceleration and reaches a velocity of 10 m/s in 5 seconds.
Calculate the coefficient of kinetic friction between the slope and the body.

Solution

All forces acting on the body are sketched in the figure. The body slides
downwards, and force F f  equals therefore F f=μ⋅N .

Write  the  theorem  of  change  of  linear  momentum  in  a  direction
perpendicular to the slope: 10⋅(0 –0)=(N – 10⋅9.81⋅cos25° )⋅5

which yields the normal force component: N=88.91N

The friction force is then F f=μ⋅88.91

The theorem of change of linear momentum is also written in the direction
of the motion:

10⋅(10−0)=(10⋅9.81⋅sin 25 °−μ⋅88.91)⋅5 ,

which solves to μ=0.2414

Remark 1: Application of the theorem in normal direction is justified rather by educational purposes: knowing the
(zero) value of acceleration, Newton's second law should have rather been used in order to get the force N.

Remark 2: Repeating the same procedure in a parametric form it would be found that all terms of the last equation
contained the mass on the first power. Since it could have been eliminated from the equation by division, it can
finally be declared that the solution of the problem is independent of the mass of the body.

Exercise 3

A body of m=10 kg is released from rest at the top of a slope of inclination α=25 ° . The body 
starts sliding down with a uniform acceleration; the coefficient of (kinetic) friction is μ=0.3 .
What time is needed for the body to reach a velocity of 14 m/s?

Solution

Make a sketch showing all forces that act on the body.

Write  the  theorem of  change  of  linear  momentum in  a  direction
perpendicular to the motion:
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This solves to

N=  
Hence the force of friction is known as:

F f= 
Write the theorem of change of linear momentum in the direction of the motion:

 
Solving the equation, time is obteined as:

t= 

Kinetic energy, work

Definition: Kinetic energy T of a material particle equals the half of product of its mass m and the

square of its velocity v. Written in a formula, T=
mv2

2

The unit of work in SI is joule (abbreviated as J), it is a derived unit: J=
kg⋅m2

   s2 .

The following definition will concern the work done by a force. From earlier studies of physics, a
definition like 'force times parallel  translation'  might  sound familiar. Now another  definition is
given which will be equivalent to the former one in the case of a force of constant direction and
magnitude, but will be cover cases when both the direction or magnitude of the force changes. It is
introduced by defining first only a small work done on an elementary translation,  which is not
influenced by an occasional change in magnitude of the force.

Definition:  Elementary work  dL done  on an elementary translation  dr by force  F acting  on a
material particle equals the dot product of the force and the elementary translation: d L=F⋅d r .

Definition: The work L done along a given path r by force F acting on a material particle equals the
sum of elementary works done by the force along the path (in a mathematically precise form, equals

the integral of the force over the path): L=∫d L=∫
r

F⋅d r .

Example 4

A body of mass m=5 kg is pulled against the slope of inclination 
α=20 ° . The force of traction is parallel to the slope and has a 
magnitude of F=50N, the coefficient of (kinetic) friction is μ=0.2.
Calculate the work of forces acting on the body until it travels from 
the bottom to the top of the slope of length s=13m.

Solution

Force F is parallel to the translation and they are directed uniformly, hence the work of F is:

LF=+50⋅13=+650 J

The work done by gravity can be considered in two alternative ways. The resolution of weight
along the translation is sg=s⋅sinα=4.446m . The force is directed downwards, opposed to the

4
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translation, hence this work is negative:

Lg=−m⋅g⋅sg=−5⋅9.81⋅4.446=−218.1 J

Another possibility is to resolve the force in components in directions parallel and perpendicular
to the slope. This latter component is also perpendicular to the translation, hence its work is zero.
The magnitude of the parallel component is m⋅g⋅sinα=16.78 N , it acts against the translation
and does therefore a negative work being equal to the total work of weight:

Lg=−16.78⋅13=−218.1 J

Out of the two other forces exerted on the body by the slope, N is perpendicular to the surface and
so to the translation, making its work to be zero:

LN=0 .

In order to find the work of the friction, the magnitude of Ff should be obtained from the normal
force N. It can be done using Newton's second law in the direction perpendicular to the surface,
since there is neither translation nor acceleration in that sense:

m⋅g⋅cos α−N=m⋅0→N=m⋅g⋅cos α=5⋅9.81⋅cos20 °=46.09 N

From this, friction force F f=μ⋅N=0.2⋅46.09=9.218N is obtained; its sense is opposed tothe
motion, doing therefore a negative work:

Lf =−9.218⋅13=−119.8 J

Exercise 4

A body of mass m=15 kg slides down a slope of inclination α=25 ° . 
The body is braked by a force F=50N that is parallel with the slope.
The coefficient of (kinetic) friction is μ=0.2.
Calculate the work of forces acting on the body until it covers a 
distance s=6m.

Solution

The work done by force F (force magnitude times the translation parallel to it):

LF=  
The work done by gravity can be considered in two alternative ways. One approach is based on
the works of components: the component perpendicular to the slope is also perpendicular to the
translation and hence does no work, while the parallel component measures

m⋅g⋅sinα=  
and does a work

Lg=  
Another  approach  uses  the  component  of  the  translation  parallel  to  the  force;  the  vertical
component of the translation is

sg=  
on which the work is done by the weight in an amount of

Lg=  

5
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In order to calculate the work of all forces exerted by the slope on
the body, the forces should be known first. Draw all forces acting on
the body into the sketch and write a force resolution perpendicular
to the slope:

∑ F i↗:
It can be solved for the normal force component and the friction force is obtained afterwards as:

N=                        F f=μ⋅N=  
The work done by the normal force is

LN=  
The work done by the force of kinetic friction is

Lf=  

Let it be noted in advance that when a static friction is dealt with, no translation occur between the
surfaces and hence static friction force typically does no work on a particle.

Theorem of change of kinetic energy

Theorem: The change in kinetic energy of a particle moving along a given path equals the work
performed along the path by forces acting on the particle. It is also known as the  work–energy
theorem.

Written in a formula: 
m
2

v2
2 –m

2
v 1

2=∫
r1

r2

R⋅d s , or briefly, L1−2=T 2−T 1 .

Usage

As clearly seen from the formula, there is neither acceleration nor time in it; consequently, the
theorem can be used in any problems where the referred quantities do not appear either among
given or requested parameters.

Example 5

A body of mass m=15 kg slides down a slope of an 
inclination α=30 ° , its initial velocity is v0=7m/s. 
The body is decelerated by a horizontal force F=120 N.
Find the distance covered by the body until it stops
(the coefficient of kinetic friction is μ=0.15 ).

Solution

In order to evaluate the work performed by the forces, at least the
force components doing any work should be known. For this reason,
all forces acting on the body are displayed in the figure: the weight
that points down, the force  F that causes deceleration, the force  N
that pushes the surfaces together and the friction force Ff  that acts
against the translation.
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The weight is m⋅g=15⋅9.81=147.2N

Applying Newton's second law in a direction perpendicular to the slope we get:

∑ F i↗: N – m⋅g⋅cosα – F⋅sin α=0→  N=147.2⋅cos30 °+120⋅sin 30°=187.5 N .

With the help of this, friction force is obtained as

F f=0.15⋅187.5=28.13 N

In order to find the work performed by the weight as well  as by the force  F,  horizontal and
vertical components of the translation s should be known: s y=s⋅sinα , sx=s⋅cosα .

In terms of the preceding expressions, the work-energy theorem can be expanded as follows:

 
m
2

(v
2
– v0

2
)=LF+Lg+Lf+ LN

15
2

(0
2
– 7

2
)=−120⋅s⋅cos30 °+147.2⋅s⋅sin 30°−28.13⋅s+0

It can be solved for s as s=6.287 m

Exercise 5

A body of mass m=15 kg is pulled up a slope of an inclination
α=30 °  by a horizontal force F=120N. 
The velocity of the body is v0=3m/s at the bottom of the slope.
Find the velocity of the body at the top of the slope of
length of 10 m ? (The friction can be neglected.)

Solution

In order to evaluate the work performed by the forces, at least
the force components doing any work should be known. For this
reason, draw all forces acting on the body in the diagram.

Among them the weight is

m⋅g=  
Newton's second law written in a direction perpendicular ot the slope:

∑ F    :  

which yields N=  
In the calculation of work done by the weight and by force F one needs to know horizontal and
vertical components of the oblique distance s: 

sx=                                         s y=  
Write the theorem of change of kinetic energy:

       
...and solve it for v:
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v=  

Example 6

An airplane travels westward at a height h=1200 m, its velocity is horizontal and has a 
magnitude of 600 km/h. A paratrooper of mass m=70kg jumps out of the airplane 
(its initial velocity is coincident to that of the airplane). At the instant of landing the velocity
of the paratrooper has a magnitude of 1.2 m/s and makes an angle of 80 °  with the horizontal. 
Calculate the total work of air resistance done on the paratrooper.

Solution

Because of the horizontal initial velocity, the trajectory of the paratrooper will be curvilinear.
Since, however, no instantaneous accelerations or forces are given or asked in the problem, there
is no need to know the trajectory. With the use of initial and final velocities, kinetic energy in both
the initial and final position of the trajectory:

Initial velocity is v0=
600
3,6

=166.7m/s , so T 0=
70⋅166.72

     2
=972611 J

On landing, T=
70⋅1.22

     2
=50.4 J

The force of gravity is m⋅g=70⋅9.81=686.7 N

In order to calculate its work, it is only possible now to use the component of translation parallel
to the force (and not vice versa, since the trajectory that force resolution could be parallel to is not
known):

Lg=m⋅g⋅h=+686.7⋅1200=824040 J

The theorem of change of kinetic energy reads now as follows:

T−T 0=Lg+Le    →   50.4 – 972611=824040+Le

that can be solved to Le=−1,796⋅106 J .

Exercise 6

A body of mass M=10 kg is whirled on a chord of
length l=1.3 m in a vertical plane. At a given instant
the chord encloses an angle of ϕ=10 °  with the vertical
direction and moves with v=15 m/s just having left the
bottom point.
Find the velocity of the body when it passes the top point.

Solution

The  problem  could  (probably)  be  solved  using  Newton's
second  law  as  well,  but  in  such  a  solution,  instantaneous
velocities should be found from variable accelerations in both
normal  and tangential  sense  which  is  rather  a  complicated
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case.  Just  for  this  reason, similar  problems with a  continuously changing state  of motion are
predominant in the use of theorems of change.

The particle is acted upon by two forces in the whole course of the motion; one of them is the
weight:

m⋅g=  
The other is the cable force of variable magnitude and direction. This latter one is always directed
radially towards the centre of the circle, so its elementary work done on the particle is

d LS=          , hence its total work is LS=       .

The work of gravity is calculated for convenience by the component of translation aligned with
the force, this component is

sy=  
The theorem of change of kinetic energy reads now as follows:

 
which can be solvec for v as: v=  

Conservative forces

There exist some kinds of forces whose work done on a moving particle is found to be independent
of the geometry of the path the work is performed along: this work depends only on the initial and
final position of the particle. These forces are called conservative forces and can be assigned with a
potential function  U dependent on the position of the particle, whose change between two points
equals the negative of the work done by the forces on the particle when it is moved from one point
to another:  U 2–U 1=−L1−2→L1−2=U 1−U2 . 

The word 'potential'  refers to  capability, a  potential  function describes the ability of a  force to
perform work. If a force did work indeed, then its ability to do further work is decreased in the same
amount.

Since a potential function is time-independent, coincident initial and final points of a path imply
zero work without respect to the geometry of the path. In a concise form: conservative forces do
zero work along any closed path.

Examples

The force of gravity is a conservative force: if  h denotes height above an arbitrary base level, the
potential function of gravity can be written in the form U (h)=m⋅g⋅h . During lifting a particle
from the base level to height  h, the work performed by gravity equals −m⋅g⋅h (the force acts
downwards, the translation  h is directed upwards, that is why the sign is negative), as far as the
potential function yields the same conclusion by the formula U 1–U 2=0 –m⋅g⋅h .

The  spring force arising in a linear spring (understood as exerted by the spring on the connected
body) is a conservative force. Let the factor of proportion between spring force and elongation be
denoted by k, then the potential function of the force exerted by a spring on the connected body at

an elongation Δ l  is U (Δ l)=
k Δ l2

2
.

9
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Counterexample: The force of friction acts always against translation and is therefore able to do
negative work only (or no work at all). Consequently, if there is any work done by friction along a
closed path, the total work cannot be zero: the force of friction is a nonconservative force.

Mechanical energy

Definition: The sum of kinetic energy of a material particle and the potential function of all forces
acting on that particle is called mechanical energy (the usual notation for this sum is T+U ).

Theorem: If all forces performing work on a moving particle are conservative, then the mechanical
energy  is  kept  constant  during  motion.  It  is  also  known  as  the  theorem  of  conservation  of
mechanical energy.

It  can also be written in the concise form  T+U=constant  but in fact,  the equality between
energies at the beginning and at the end of motion is mostly written. For example, in the case of a
motion from point 1 to 2 the equation  T1+U 1=T2+U2  is written down and solved for some
unknown.
(The proof of a theorem is also based on this principle: stating the theorem of change of kinetic energy between any two
points  in  the  form  T2 –T 1=L1−2 ,  the  work  of  conservative  forces  can  be  plugged  in:  T2 –T 1=U 1 –U 2 .  After  an
arrangement we have T1+U1=T2+U2  , and since points 1 and 2 may denote initial and final points of any segment of
the trajectory of the motion, the sum of the two types of energy must remain constant.)

Example 7

A material particle of mass m  starts sliding with an initial velocity v0  from the top point of a 
hemisphere of radius r . Find the height h where the particle leave the surface.

Solution

Both initial and final positions are shown in the figure to
the right. The height in terms of angle α is h=r cos .

When the particle is detached, no forces are exerted on it
by  the  surface:  the  only  force  is  from  gravity,  which
generates accelerations on the spherical path alone. Writing
Newton's second law in normal direction:

m g cos=m an=m
v 2

r
, 

which  yields r cos=
v2

g
after  simplification.  It  lets  the  velocity  of  the

particle to be expressed as v=√h⋅g when it leaves the sphere.

Gravity  is  the  only  force  that  performs  work  between  initial  and  final
configurations.  Since  it  is  conservative,  the  theorem  of  conservation  of
mechanical energy applies. Kinetic energies in the initial and final configurations are written as

T 0=
1
2

m⋅v0
2

 and T=
1
2

m⋅v2
, respectively.

Let the height of the particle be related to the centre of the sphere; thus, the potential energies in
the initial and final configurations read U 0=m⋅g⋅r  and U=m⋅g⋅h , respectively. According
to the theorem,
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T 0+U 0=T +U→
1
2

m⋅v0
2
+m⋅g⋅r=

1
2

m⋅v2
+m⋅g⋅h .

After simplification by the mass, multiplication by two and plugging the velocity of leaving the
sphere in, the equation v0

2
+2 g⋅r=g⋅h+2g⋅h is obtained that can be solved for h:

h=
2
3

r
v0

2

3 g
.

Exercise 7

A matchbox released at a height H  follows the 
given track. The car passes the loop of radius r  
in a way that is never released from the track 
and the foundation is not moved by the car either.
a) Find the velocity v  the car has by passing the 
    top of the loop in function of H . 
b) Find the limits for height H .
The matchbox is modelled as a particle of mass m , 
the foundation of the loop is of mass M , friction 
as well as other masses can be neglected.
r=15 cm, m=0.05kg, M=0.5 kg

Solution

The matchbox starts from rest, hence its initial velocity and kinetic energy are:

v0=  T 0= 
On the top of the loop, kinetic energy as a function of the unknown velocity v is:

T=  
Here the use of the theorem of change of kinetic energy seems to be a solution of general scope.
However, by neglecting friction,  the net force exerted on the car by the track will  always be
perpendicular to the track, making the normal force component unable to do work. In this case
only gravity performs work: since it is conservative, the theorem of conservation of mechanical
energy applies. Let the base level of the potential of weight be chosen to fit the lowest point of the
track.

At an initial time instant, the height of a car above the base level is                 , so its potential
energy at the same time is

U 0= 
On the top of the loop, the height of a car above the base level is                 , so its potential energy
at the same time is

U=  
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Write the theorem with these data:

T 0+U 0=T +U→  
The square of velocity (and then the velocity itself) can be expressed from the above formula:

v2
=  

a) v=  

When passing the top of the loop, the car moves along a circular
path. Draw all forces acting upon it in the figure. (Since it touches
the track, two forces are exerted on it.) 

How large is the acceleration generated by those forces?

an=
Write Newton's second law along the direction of acceleration, then plug the expression obtained
for the velocity into it :

m⋅g+N=m⋅an   →  
Now express force N from the equation:

N=  
This force must satisfy two conditions. 

Since the car keeps in contact with the track, the force between them cannot be tensile (in this case
the car would fall down). Stating and then solving the corresponding inequality for H we have:

Another condition is that the foundation cannot be released from the
ground. This part should remain in equilibrium while acted upon by
three forces as follows: its weight, the negative of the force exerted
upon the car and a support force (let it be denoted by F) transmitted by
the ground. Their equilibrium is expressed as

∑ F iy :  
Now substitute the earlier expression for force N and express force F from it:

The  foundation  will  not  be  released  if  force  F is  compressive.  Stating  and  then  solving  the
corresponding inequality for H we have:

Finally, two unified conditions together can be written as follows:

b)                 <H<  

12
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Moment of a force

In the precedeing lectures material particles were only dealt with, ignoring the extension of the body
as well as the location of forces. It is obvious by the example fo a merry-go-round for anybody that
a force can result not just in translation but also rotation of a body. This turning effect is called the
moment of a force and denoted commonly by M.

Definition: The moment of a force about a given axis is calculated as a product of the magnitude of
the perpendicular component of the force (to the axis) and the arm of that force component. This
moment arm is defined as the (perpendicular) distance between the given axis and the line of action
of the force. The moment is positive if the sense of its rotation is counterclockwise viewed down in
front of the arrow of the given axis.

Definition: Within a plane, the moment of a force about a point equals the moment of the same
force about an axis directed perpendicularly in front of us which passes through the point in case. A
moment is positive if rotates counterclockwise.

Perhaps the simplest illustration of the effect of moment is the seesaw:
considering the problem in plane, the moments about the pinpoint of
the seesaw are calculated. A necesary condition of the equilibrium is
that moments of two forces on opposite sides of the seesaw be of equal
magnitude and opposite sense. The weight of a person sitting at one
side of the axis (pinpoint) has a moment opposite to that of sitting on
the other side. Moments in both cases can be found as the product of a
weight multiplied by its distance from the axis, that is,

F1⋅l1=F2⋅l2 .

is needed for equilibrium, showing that a larger force F2  implies a smaller moment arm l2 .

Of course, more than two such rotating effects can be found in real systems, therefore, the condition
of equilibrium is not defined in general through an equality of two effects, but their signed sum is
made equal to zero. For instance, considering the counterclockwise sense to be positive, then the
condition of equilibrium reads  F1⋅l1 – F2⋅l2=0 .  This, if  holds, can easily be arrranged to the
equality of two moments; but if not, then it can be seen from the sign of the left hand side which
sense the system starts to rotate in (if the sign is positive, a counterclockwise rotation will occur).

We remark that horizontal bar shown in the figure is acted on by one force more, exerted by the pin
in an upright vertical direction (denoted it by T). Since its line of action passes through the axis of
rotation, its arm is zero, making the corresponding term excluded from our equation. Equilibrium,
however require not only the sum of moments but also the sum of force components along any
direction  to  be  zero,  hence  the  vertical  resolution  equation  is  T−F1 – F2=0→T=F1+F2 .
Moreover, the body should not only be balanced against rotation about the pinpoint but also, e.g.,
about the point of application of F1. The arms of forces F1., T and F2 with respect to this point are 0,
l1 and  l1.+  l2,  respectively,  and  hence  the  moment  equilibrium  equation  can  be  written  as

F1⋅0+(F1+F2)⋅l1 – F2⋅( l1+l2)=0 that yields the same condition F1⋅l1=F2⋅l2 as got earlier.

In order to skip repeated references to the clock, the moment will be considered positive (unless
stated otherwise) in a moment equation if it rotates counterclockwise. Some rules to consider:

• This  moment  is  due  to the  force.  If  the  same  force  is  resolved  (decomposed)  into
components in any point on its line of action, then the sum of moments of components add

1



Basics of Statics and Dynamics eA5

to the moment of the force (as componenets also add to the force itself); this rule is known
as Varignon's theorem.

• If the line of action of a force passes through the axis (or point in 2D) of a moment, it does
not rotate about the axis (point).

• A force component parallel to the axis of moment does not rotate about the axis either. This
follows obviously from the definition of moment but considering parallel  lines as those
intersecting at infinity, it also follows from the two preceding rules.

• Positive or negative sense is decided by the handedness of coordinate system; that is, if a
left-handed system is used in some literature, then clockwise moment has the positive sense.

Example 1

Calculate the moment of forces F1 and F2  shown in
the figure about point A  as well as about the origin.
F1=12 kN , F2=9kN

Solution

Moment of force F1

The force rotates clockwise about the origin, thus, its sense is
negative. The moment arm equals the vertical distance of the
line of action of F1 and the origin (2m):

M 1
(0)

=−12⋅2=−24kNm .

The force rotates clockwise about point A, it is therefore negative; the arm equals the vertical
distance 2+2,5 = 4,5m:

M 1
(A )

=−12⋅4,5=−54 kNm .

Moment of force F2

A momenst of an oblique force can be calculated as the sum of moments of component forces
along x and y. These components are

F2 x=+9⋅cos 30°=+7.794kN(→) ,   F2 y=−9⋅sin 30 °=−4.5kN(↓) .

With a decomposition done in the given point of application, the horizontal components rotates
counterclockwise about the origin and is positive, its arm is the distance measured from axis  x
(2.5 m); whereas the vertical component rotates clockwise (it is negative), its arm is the distance
measured from axis y (3 m):

M 2
(0)

=+7.794⋅2.5 – 4.5⋅3=+5.985kNm (↶)

Observe that after the senses of moments have been decided by inspection, only absolute values
of forces and distances are accounted for.

Using the same point for decomposing the force, the horizontal one does not rotate about A (its
arm is zero), the vertical component rotates in negative sense (clockwise) with an arm equal to the
horizontal distance (3 m):

M 2
(A )

=+7.794⋅0– 4.5⋅3=−13.5 kNm (↷)

Moments could also be calculated without resolving the force into components but it needs some

2

A



Basics of Statics and Dynamics eA5

careful preliminary steps concerning geometry as follows:

In order to get the distance between the line of action and the
origin, the point of intersection between that line of action and
axis  y is located first. It is at a height of  3⋅tg30 °=1.732 m
above point A, thus, at a depth of

2.5−1.732=0.768m below the  origin.  Considering  the  right
triangle fitted to the origin:

k20=0.768⋅cos30 °=0.665m .

Concluded from the position of line of action of F2 , its moment is positive (counterclockwise):
M 2

(0)
=+9⋅0.665=+5.985 kNm (↶) , exactly as obtained from components.

The distance of the same line of action from point A is:

 k2 A=3⋅sin 30 °=1.5 m

Looking at the prolonged line of action of F2 about point A, it rotates counterclockwiseand has
therefore a positive moment: M 2

(A )
=−9⋅1.5=−13.5 kNm(↷) .

Exercise 1

Calculate the moment of forces F1  and F2  shown in
the figure about point A  as well as about the origin.
F1=9 kN ,F2=12 kN

Solution

Moment of force F1

How does the force rotate about the origin compared to the clock?

................ , hence its sign is ....
Distance between the line of action and the origin (moment arm) is ................

The moment of the force: M 1
(0)

=    .......⋅.......=...... kNm(    )
Moment about point A:

M 1
(A)

=   .......⋅.......=...... kNm (    )
Moment of force F2

The force is oblique, consider rather by perpendicular components (through any point in its line of
action) instead of by oblique resultant and distance:

F2 x=........⋅............=...................... kN(    ),
F2 y=........⋅............=...................... kN(    ) .

When calculating moment about the origin:

Sense of rotation of the horizontal component: ......, sign of moment: ....., moment arm: ..........m.

Sense of rotation of the vertical component: ......, sign of moment: ....., moment arm: ..........m.

3
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The moment of the force: M 2
(0)

=  .......⋅.......     .......⋅.......=...... kNm(    )
When calculating moment about point A:

Sense of rotation of the horizontal component: ......, sign of moment: ....., moment arm: ..........m.

Sense of rotation of the vertical component: ......, sign of moment: ....., moment arm: ..........m.

The moment of the force: M 2
(A)

=   .......⋅.......     .......⋅.......=...... kNm (    )

Calculation of moments in 3D can be reduced to a planar problem by considering only components
and projected distances that are perpendicular to the axis of moment.

A moment taken about a point in space is a vector whose component along any axis  t equals the
moment  taken  about  an  axis  t' which  is  parallel  to  t and  passes  through  the  point  under
consideration.  Consequently, if  moments  about  each axis  passing through that  point  and being
parallel  to one of the coordinate axes are arranged in a vector, it  will  exactly be the vector of
moment about the point in case.

Example 2

Calculate the moment of force F  applied at a point given by 
vector r  about axes x , y , z  as well as about the origin.

     F=[ 5
7

−6] kN, r=[483 ]m
Solution

When a moment about x is looked for, the problem should be viewed
in front of the axis, i.e., frok right to left (see the figure aside). Both
components rotate in negative sense:

M x=−7⋅3 – 6⋅8=−69kNm (↷)

The sign of moment should here be interpreted as seen in front of +x.

Finding moment about axis  y requires an opposite view (i.e., a
top  view)  as  shown in  the  attached  figure.  Both  components
rotate in a positie sense, thus:

M y=+5⋅3+6⋅4=+39 kNm(↶)

The sign of moment is now interpreted as seen in front of +y.

Finally, in order to get moment about axis  z, a top view as shown
again  in  the  attached  figure  is  needed.  Horizontal  and  vertical
components rotate in a negative and positie sense, respectively:

M z=−5⋅8+7⋅4=−12kNm(↷)

A nyomaték előjele itt a z tengely irányából nézve értendő.

From the three above components, the moment of F about the origin is MF
0
=[−69

+39
−12]kNm .

4
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Exercise 2

Calculate the moment of force F  applied at a point given by 
vector r  about axes x , y , z  as well as about the origin.

     F=[ 8
4

−3] kN, r=[ 5
−7

3 ]m 

Solution

In order to find moment about axis x, sketch a view in
front of the same axis x:

Decide the sensse of rotation as well as the sign of both
components based on the sketch.

M x=.......⋅.......    .......⋅.......=  ........ kNm
Next. in order to find moment about axis  y, sketch a
view in front of the same axis y:

Decide the sensse of rotation as well as the sign of both
components based on the sketch.

M y=.......⋅.......    .......⋅.......=  ........ kNm
Finaly, when the moment about  axis  z is  looked for,
sketch a view in front of the same axis z:

Decide the sensse of rotation as well as the sign of both
components based on the sketch.

M z=.......⋅.......    .......⋅.......=  ........ kNm
Each of there moment components are moments calculated about axes passing through the origin;
consequently, the vector of moment about the origin is

M (0)
=[

M x

M y

M z
]=[

     
     
     ]kNm .

Example 3

Find moments of force F=14kN about
each point given on axis x .

Solution

Because of the angle 45°, vertical and horizontal components
of force F differ only in direction but not magnitude, that is,

5

F...=..... kN(...)
F...=..... kN(...)
r...=.....m
r...=.....m

F...=..... kN(...)
F...=..... kN(...)
r...=.....m
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F...=..... kN(...)
F...=..... kN(...)
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F x=F y=14⋅√2
 2

=9.899 kN  to the right and downwards.

If the force is resolved into components in its point of application, the horizontal component
rotates in a negative sense about each point with an arm of 2 m; the vertical component rotates in
a  positive  sense  about  each point  with  an arm equal  to  the  coordinate  x of  each  point.  The
moments are

M 1=−9.899⋅2+9.899⋅1=−9.899kNm (↷)

M 2=−9.899⋅2+9.899⋅2=0 kNm

M 3=−9.899⋅2+9.899⋅3=+9.899 kNm(↶)

M 4=−9.899⋅2+9.899⋅4=+19.80kNm (↶)

M 5=−9.899⋅2+9.899⋅5=+29.70 kNm(↶)

Remark: zero value of M2 means that force  F does not rotate about that pointl. It can only happen if its line of
action passes through the point at 2 m which is the case indeed.

Exercise 3

Find moments of force F=16kN about
each point given on axis x .

Solution

The moment of an oblique force can be obtained as a sum
of  moments  of  its  components.  Let  the  resolution  into
components be done in the point of application of F:

F x=........⋅...........=..................... kN(    ) ,
F y=........⋅...........=..................... kN(    ) .

The horizontal component rotates about the given points ...................................., hence the sign of
its moments is ..................., and its moment arm measures.......................................

The vertical component rotates about the given points ...................................., hence the sign of its
moments is ..................., and its moment arm measures.......................................

In the light of this, moments of the force about marked points are:

M 1=                                                    =           

M 2=                                                    =           

M 3=                                                    =           

M 4=                                                    =           

M 5=                                                    =           

6
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Couples

It has already been seen that two forces of equal magnitude and opposite sense are equivalent to the
zero force if they share a common line of action. Two forces are called to represent a couple if they
have the same magnitude, opposite sense and their lines of action are parallel but not coincident. If
resolution equations are written in order to calculate the resultant of a couple, all components of
both forces in the couple will appear with the same magnitude and opposite sign, adding up all to
zero. Moment is, however, nonzero: its magnitude is the same about all points. It can also be proved
by the cross-product definition of the moment of a force, but it is shown here only by a scalar
approach within the plane of two parallel forces, see the figure below for illustration:

The sum of moments about point A, B and C, respectively:

M A=−F⋅k 1+F⋅(k+k 1)=F⋅k

M B=F⋅k 2+F⋅(k−k2)=F⋅k

MC=F⋅(k+k3)−F⋅k 3=F⋅k

Thus,  the two force  generates  the same moment about  any point;  their  resultant  is  purely this
rotating effect. This effect of rotation that a couple is equivalent to is called torque. The magnitude
of a torque, as illustrated by the three equations above, depends on two conditions: the magnitude of
forces in the couple and the distance between their line of action, called also the arm of the couple.
The sense of rotation and hence the sign of a torque depends on the relative position of the two
forces and the easiest decision can be made on it by simply checking the sense of moment caused
by one force about any point on the line of action of the other.

Example 4

Determine the resultant of a couple given by forces 
F1=F2=12kN according to the figure 
a) by summation of the moments of each force 
    about the origin,
b) by calculating the arm of the couple.

Solution

The moment of two forces about the origin can be found in
several  ways.  For  a  change,  let F1 and F2 be  resolved
into  components  in  their  intersection  with  axis  y and  x,
respectively; thus, only the horizontal component of F1 and
only the vertical component of F2 rotates about the origin.
The value of moment is as follows:
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M=+12⋅
    3

√32
+42

⋅4 –12⋅
    4

√32
+42

⋅7=−38.4kNm (↷)

If the distance of two parallel lines is looked for, the
easiest way is to compare two similar right triangles in
the figure (see the longer legs and hypotenuses):

k
4

=
  7−3

√32
+42

→k=3.2m

To obtain the sign of the moment, one needs to consider
that force F1  rotates counterclockwise about the point
of application of F2 . It means that its moment is
negative: M=−12⋅3.2=−38.4kNm (↷)

Exercise 4

Determine the resultant of a couple given by forces 
F1=F2=15 kN according to the figure 
a) by summation of the moments of each force 
    about point A ,
b) by calculating the arm of the couple.

Solution

Resolve both forces into components in their point of
application, showing the sense of components as well:

F1 x=                                      , F1 y=    
F2 x=                                      ,F2 y=   

The sum of moments of four forces about point A (sign, force magnitude, moment arm):

M (A)
=  .....⋅...   .....⋅...   .....⋅...   .....⋅...=  ..... kNm(    )

The moment arm equals the distance between parallel forces.

Draw that distance in the figure and look for similar triangles.

The moment arm is therefore

k=                     =          
In which sense do forces rotate about each other?

The moment of the couple (sign, magnitude, moment arm) is:

M=..F⋅k=                            =    

Example 5

Replace the moment M=27 kNm ( )  by a couple of vertical ↶
forces passing through points A  and B , respectively.

Solution

Two vertical lines through  A and  B lie at a distance of  k = 3 m
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defining the arm of the couple.

Magnitudes for A and B are obtained by the rearrangement of formula M=F⋅k :

A=B=
M
k

=
27
3

=9 kN

In order to set the arrows of forces correctly, the sense of rotations should be adjusted. A vertical
force through point A rotates about B in a positive sense if directed downwards and in negative
sense if directed upwards. The moment given in th problem corresponds to the former case; and
the  other  force  of  the  couple  must  have  an  opposite  direction:  B points  therefore  up:

A=9kNm (↓) ,B=9kNm (↑)

Remark: since the forces here are all vertical, no  y coordinates appeared in the calculations because of the free
translation of forces in their own line of action.

Exercise 5

Replace the moment M=27 kNm ( )  by a couple of horizontal ↷
forces passing through points A  and B , respectively.

Solution

The arm of the couple equals the distance between two parallel
lines of action of forces:

k=...... m
Using this value, the magnitude of forces in the couple is

|A|=|B|=
|M|

 k
=

       
  

=......... kN

What direction should the horizontal force A have in order to rotate

about point B in the same sense as moment M does? ..........
What direction should the horizontal force B have in order to rotate

about point A in the same sense as moment M does? ..........
Sketch the result.

Example 6

Replace the torque M=−23 kNm ( ) by a couple ↷
involving a force F1=7 kN as shown in the figure.

Solution

One  force  in  a  couple  is  given,  the  other  should  have  equal
magnitude and opposite sense: F2=7kN (↘) .

The moment of a couple will be of the desired magnitude if its

arm is k=
23
7

=3.286 m

This distance should be measured perpendicularly to the given

9

3m

F1

y

x

3m

4 m

3m

2m

A

y

x

1m

B

4 m

3m

2m

A

y

x

1m

B

3 m

y

x
3m

x2

45 ° 45 °

Δ x



Basics of Statics and Dynamics eA5

line of action in order tho get the line of action of F2 ; this can be done both to the right and
upwards or to the left  and downwards. With the first choice, F2 rotates in a negative sense
about the point of application of F1 matching exactly the requirements of the problem. This
translation of the line is shown in the figure, making possible to find the intersection of line of
action of F2 and axis x as follows:

Δ x=3.286⋅√2=4.647 m that yields x2=3+4.647=7.647 m

Exercise 6

Replace the torque M=+23 kNm ( ) by a couple ↶
involving a force F1=8kN as shown in the figure.

Solution

What direction does force F2 have? .....
How large is its magnitude? F2=..... kN
The arm of the couple can be obtained from the magnitudes of the
torque and the forces:

k=
M
F

=
     
  

=.........

In which direction should F2 be translated with respect to F1 ? .......
What is the horizontal shift between the two lines of action? ....................

Resultant of parallel force systems in a plane

The resultant of a plane force system is a single force or moment having the same effect on a body.

When two forces share a line of action, their resultant is known to be a force still in the same line of
action, and its signed magnitude is defined by the sum of (signed) magnitudes of the two forces
(under a special choice of two equal forces opposed to each other, this is specifically the zero force).
There have already been found examples at couples that if the lines of action do not coincide, it is
not sufficient to use resolution equations for finding the resultant but rotational effect should also be
accounted for.

Consider first what kind of effect is a compound of a force and a torque equivalent to.

Example 7

Determine the resultant of the force F=13 kN 
and torque M=14kNm given in the figure.

Solution

In  order  that  a  resolution  equation  can  be  evaluated,  any
torque  M should  be  rewritten as  a  couple.  At  this  stage of
studies, however, it is known that two forces forming a couple
would be of equal magnitude and opposite sense, making each
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other to be cancelled in any resolution equations. Thus, in the resolution equation of the problem
currently addressed, only the force  F will appear, making sure that the resultant has the same
magnitude and direction as F have (it points to the right horizontally): R=13 kN (→) . It is yet
to be clarified where that resultant exactly is: it is only known that its line of action should be
located in a way that  R could rotate by the same moment about
any point as the given force F and torque T together. The line of
action of  R can uniquely be specified by finding its intersection

yR  made  with  axis  y.  It  can  be  obtained  by  the  moment
equation written about the origin (the term in brackets is the value
of R, already known): ∑ M i

(0) :−13⋅3+14=−(13)⋅yr , yielding
yR=1.923 m (positive sign of this coordinate confirms that the

intersection is above the axis x indeed).

The line of resultant could also be specified by another parameter.
Let d denote the the vertical shift of the resultant with respect to the
line of  F downwards. Equivalence of moments about the point of
application of force  F is written as ∑ M i

(F) :+13⋅0+14=+13⋅d ,
hence  d=1.077 m (positive  sign  confirms  here  that  our
assumption on a lower position of R than of F is true).

As a generalization of this latter method, one can say that, writing
the equivalence of moments about the point of application of the force, only the torque on one
side and only the moment of the force on the other side will be nonzero. This also means that the
resultant must be located on the side of the given force where it results in a rotation of the same

sense as the torque has. The distance between lines is given by the formula d=
|M|

|R|
=
|M|

|F|
. In

summary, the resultant  of  a  force and a  torque is  another  force with the same direction and
magnitude as the given force has, but its line of action is translated perpendicularly by a distance
directly and inversely proportional to the magnitude of the torque and of the force, respectively.

The same problem can also be solved by a method only slightly different from the previous one.
The torque M can be replaced by a couple composed of forces F1 and F2 . The resultant of
force F and torque M is the same as that of F,  F1 and F2  . Let the force F1 be chosen to be the
negative of F (even in a common line of action with F). Subtracting now the force system (F, F1 )
from the initial system (F,  F1  ,  F2  ), only a single force  F2 remains but the resultant does not
change. This force itself is therefore the resultant of the system (F, F1 , F2 ) as well as of force F
and torque M. It follows from the properties of a couple that magnitudes of all forces F, F1 , F2 are
equal and both F and F2 are opposed to F1. As by the previous method, the line of action of F2 can
be obtained by a perpendicular shift |M|/|F2|=|M|/|F| . There also exists a thumb rule to find
the proper direction of that shift as follows: let the tail of the semicircular arrow of the torque be
fitted to the tail of the given force  F: the tip of the torque arrow turns towards the side of the
resultant.
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Exercise 7

Determine the resultant of the force F=31kN 
and torque M=14kNm given in the figure.

Solution

Any resolution equations written in order to get the resultant would
contain components of F and R only (torque never appears in a force
resolution equation). Keeping this in mind, what is the sense and
magnitude of the resultant force?

R=.......kN (   )
Let the intersection of the resultant  and the axis  x be denoted by  xR .  The moment of the
resultant equals that of the force F and the torque about any point of the plane. Let it be written
about the origin:

∑ M i
(0) :                                                 →xR=

Another option is to find the position of the resultant with respect to force F: on which side of the
line of action of  F should the resultant be located in order that it can rotate about the point of

application of F in the same sense as torque M does? ...........
How far the resultant should be from force F such that it can rotate
in the same amount as M does?

.........=.......⋅Δ x→Δ x=
Sketch the result.

Example 8

Find a single force that replaces 
both forces given in the figure.

Solution

Assuming  a  resultant  directed  vertically  upwards,  the  vertical
resolution equation reads: 

∑ F iy :−5+15=R y→R y=+10kN (↑)

None of the given forces has horizontal components, hence nor
does the resultant do: the resultant is therefore a force of 10kN
directed upwards vertically. Let the intersection of that resultant
and the axis x be denoted by xR -rel. Let the balance of moments
about the origin be written as follows:

∑M i
(0 ):−5⋅2+15⋅5=10⋅xR→ xR=6.5m

Quick solution using a couple

Let the 15-kN force be split into two components such that one component
forms a couple with the 5-kN force and another component will simply the
remaining part. The couple has a moment of +5⋅3=+15 kNm (↶) , the
remaining part is a vertical upwards force of 10 kN in its original line of action. The resultant of that 10-kN force and
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the 15-kNm torque is another upwards force of 10 kN at a distance of 15/10 = 1.5 m from the original 10-kN (or, 15-
kN) force. The sense of that shift of 1.5 m can be found by fitting a counterclockwise semicircular arrow to the tail of
the 10-kN force. The tip of the curvilinear arrow will show the side of the force where the resultant is located. 
Finally, adding those 1.5 metres to the original coordinate of 5 m of the force, the coordinate of the resultant is 
obtained again as 6.5 m.

Exercise  8

Find a single force that replaces 
all three forces given in the figure.

Solution

Assuming that the resultant is a force, find its components.

All given forces are vertical (with no horizontal components),

making the horizontal component of the resultant to be ....
The vertical resolution of the resultant must equal the sum of
vetical components of the three forces. Assuming an upwards

R y , the equation is:

∑ F iy : F1+F2+F3=R y→  ......   ......   ......=   .......→R y=...... kN(    )
(Since it is nonzero, the resultant is a force indeed.)

The moment of the resultant force about the origin equals the sum of moments of forces about the
origin. Write this equation with the assumption that the resultant intersects axis x at xR :

∑ M i
(0) :   .....⋅....   .....⋅....   .....⋅....=   .....⋅....

It solves to

xR=....... m
What does the sign of xR mean? Sketch the result.

Resultant of a general plane force system

If a system of forces is not composed exclusively of concurrent forces or exclusively of parallel
forces then the force system is called general. The resultant of such a general system can be of any
kind discussed so far. For this reason, the complete calculation of the resultant is divided into two
steps.  Firstly,  the  type  of  the  resultant  is  identified,  it  can  then  be  followed  by  the  numeric
evaluation of the resultant.

Identifying the type of resultant: reduction into a force-couple system about a given point

In  the  first  step,  let  the  force  system be  replaced  by a  force  passing  through  a  point  chosen
arbitrarily and a moment associated to it (therefore, is also assiciated to the point itself). The names
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for that force and moment are net force and net couple about the given point. This system is also
called the equivalent force-couple system of the original one, which causes the resultant to be the
same for both systems. The unknown net couple does not appear in resolution equations, so these
equations can be used to get all components of the net force; likewise, the net force passes through
the chosen point and has therefore no moment about that, letting the net couple be obtained directly
from the equivalence of moments about the chosen point.

If the net force is the zero force and the net couple is also zero, then the resultant is the zero force.

If the net force is the zero force but the net couple is nonzero, then the resultant is a torque with a
magnitude equal to that of the net couple.

If the net force is nonzero, then the resultant equals the resultant of the net force and net couple.As
was explained earlier, it is always a force with the magnitude and direction of the net force, and
whose line of action can be obtained by an appropriate perpendicular translation.
Remark: 'reduction of a system into a force-couple system about point P' or 'finding the equivalent force-couple system
about point P' can also be (in a way somewhat sloppy but with no risk of confusion) referred as 'reduction of the system
to point P'.

Example 9

Determine the resultant of forces and torques 
given in the figure by finding their equivalent
force-couple system about point A .

Solution

Components of the net force through point A can be calculated
from simple resolutions (unknown components are assumed in
the positive sense of coordinate axes):

∑ F ix :+13+0−23⋅    5

√52+42
=A x→ A x=−4.960kN(←)

∑ F iy : 0 –19+23⋅   4

√52+42
=A y→ A y=−4.632kN(↓)

Even at this stage it is clearly seen that the resultant will be a force, whose components are equal
to those of force  A komponenseivel, its magnitude is: R=√4,9602+4.6322=6.787 kN(↙) , its

direction is given by tanαR=
4.632
4.960

→αR=43.04 ° .

The net couple could be in fact determined from a moment about any point but,  in order to
maintain the calculation intact of any mistake made at the evaluation of force A, the most efficient
choice  is  to  write  the  moment  about  the  same  point  A.  The  oblique  force  is  resolved  into
components to advantage in its point of intersection made with axis y, so it is sufficient to take the
horizontal component into account. The net couple is assumed to rotate in a positive sense, thus:

∑ M i
(A):−13⋅2 –19⋅5+23⋅   5

√52+42
⋅2 – 8 – 16=M A→ M A=−109.1 kNm (↷)

Before the unification of the net force and net couple about point A into a final resultant, they are
sketched to show the sense of translation of force A by the use of the semicircular arrow: it can be
concluded  that  force  A  should  be  moved  downwards  and  to  the  right  by  an  amount  of
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109.1
6.787

=16.07m .  Horizontal  and  vertical  components  of

this shift from point A are as follows:

Δ x=16.07⋅sin 43.04 °=10.97 m(→) ,

Δ y=16.07⋅cos 43.04 °=11.75 m(↓) . 

The line of action passes through the point [+10.97
−9.750 ] ,  the

magnitude of the resultant is R=6.787 kN(↙) and it makes
an angle αR=43.04° with the horizontal axis.

Exercise 9

Determine the resultant of forces and torques 
given in the figure by finding their equivalent
force-couple system about point A .

Solution

Among  components  of  the  equaivalent  force-couple
system about  A, the net force is calculated first. Let the
forces be written into the resolution equations:

∑ F ix :                                                 =    A x

∑ F iy :                                                 =    A y

The solution to the equations:

A x=......... kN(    ) , A y=.........kN (   )
Can the type of resultant be identified on this basis? If yes, what is that? .....................
The net couple equals the moment of all forces about point A. (Let us start also here by the forces,
writing the moment of the oblique force by components. Force A on the right hand side does not
ratate about point A, that is why it is not written out.)

∑ M i
(A) :                                                                           =   ......

Its solution is:

M A=...... kNm(...)
Complete the sketch by the net force and net couple about point A.

What will be the resultant of these two effects? Give its components:

R x=......... kN(    ) ,R y=.........kN (   )
Find the magnitude and direction of the force as well.
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R=...............................=......... kN (...) ,

.....αR=
      

→αR=....... °
Where will be the resultant force with respect to the line of action of force A?

What is the amount of translation?

.....=
         
  

=..........

Where this distance should be measured?

Using the porition of point  A, let us calculate two coordinates
of a point on the line of action of the resultant:

xR=0    .....⋅.... ......→xR=

yR=4    .....⋅.... ......→ yR=
Make a final sketch.
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Distributed loads

The discussion so far has been restricted to the treatment of point loads acting on a material particle.
Forces in reality, however, are almost never concentrated to points but are distributed in some sense.
Distributed forces can be classified according to the domain over which the force is distributed.
Volume forces or  body forces are characterized by the property that their resultant depends on the
position and magnitude of a three-dimensional region they act upon. A classical representative of
such volume forces is gravity that results in a (weight) force of magnitude ϱV g  for each volume V
(with  ϱ  being the density).  Surface forces are typically contact forces between adjacent bodies.
While solving problems in a plane, the third dimension of the problem is projected onto the plane,
which results in the transformation of surface loads into line loads (or knife-edge loads). The total
magnitude of a distributed load obviously depends on the magnitude of the domain acted upon by
the load (larger domain typically results in larger resultant) but the ratio of the resultant of the load
and the magnitude of the domain has a limit if this latter approaches zero. This value is called the
intensity of the distributed force at the given point. Distributed forces are commonly denoted by
lowercase letters, the most frequently used ones are g, p, q, w.

The main objective of this exercise is to learn how distributed loads can be replaced by a single
concentrated force, that is, how their resultant can be found.

Resultant of volume forces

If the weight of a straight beam with a rectangular cross section should be characterized by a single
force, one can do that by taking the product of mass m and acceleration g of gravity, where the mass
is obtained as the product of volume V and density ϱ :  G=m⋅g=V⋅ϱ⋅g . The product of density
and acceleration of gravity is called specific weight  ( γ=ϱ⋅g , meassured, e.g., in  N/m3 ), which
also corresponds to the intensity of gravity force. The resultant passes the mass centre of the body.

Resultant of surface forces

Intensity of a surface load can be defined in a way quite similar to that of a volume load, just the
area of distribution should approach zero in limit. A possible unit for such an intensity is therefore
N/m2 . The intensity of a load can be displayed over the
surface by perpendicular lines of length proportional to the
local value of intensity (perpendicular line lengths in the
diagram  therefore  do  not  represent  real  distances  but
intensity  values).  The  resultant  of  a  surface  force  is
proportional to the volume of this load diagram and passes
through its centroid.

Resultant of line forces

Volume or surface loads are often reduced to line loads in practical calculations. If the volume of
the beam discussed above is calculated as  V=l⋅A  (where  l and  A denotes the length and cross
sectional  area  of  the  beam,  respectively),  then  concentration  of  the  volume load in  each cross
section results in a line load. Its intensity will equal A⋅γ  and will then be measured, e.g., in N/m.
In  a  planar  problem similar  concentration  is  done  for  loads  distributed  over  surfaces  that  are
perpendicular to the plane as shown in the following figure:

1

q [kN/m2 ]
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Parallel distributed forces

The resultant is proportional to the 'area' determined by the load diagram, its direction is parallel to
the intensity and its line of action passes through the centroid of the diagram. There will be dealt
with uniform(ly) and linear(ly) distributed forces, more complicated cases are not discussed here
because of the relative complexity of its mathematical background (nevertheless, any properties
mentioned so far still extend to those cases as well). Assume that the location of the centroid of two
elementary plane shapes (triangle and rectangle) is publicly known, so the resultant can easily be
found in elementary cases.

Example 1

Find the resultant of the uniform distributed load 
shown in the figure.

Solution

The resultant of a vertical load is also vertical, its magnitude is:

R=5.2⋅6.6=34.32 kN(↓)

The resultant is located in the middle of the line of distribution:

6.6/2=3.3m

Exercise 1

Find the resultant of the linearly distributed load 
shown in the figure.

Solution

The resultant of a vertical load is also vertical, its magnitude equals the area of the diagram:

R=
The resultant is located in the third-point of the line of distribution, farther from the zero value:

1
3
⋅6.6=       m

2
3
⋅6.6=       m

If the load diagram is more complicated than an elementary shape, then its resultant can be obtained
by superposition. It is based on the fact that the effect of a distributed load is equivalent to the 
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cumulative effect of distributed loads if the cumulative intensity of these equals to the original 
intensity at each point. In other words, the resultant of a load is obtained as a resultant of partial 
resultants.

Example 2

Find the resultant of the distributed load 
shown in the figure.

Solution

Firstly, the linearly distributed load needs to be replaced by some
others of known resultant in a way that component intensities
should add up to the original value at each point. It can be done for linear functions if component
functions are also (at most) linear and their sum equals the value of the original function at two
points (preferably the starting and endpoint). Let both linear functions be chosen such that one of
their starting or final values is zero. It implies that values on the opposite end must match the
original value of the function. 

Two partial resultants are as follows:

R1=
1
2

7.5⋅4.8=18kN(↓)

R2=
1
2

5.4⋅4.8=12.96 kN(↓)

Their resultant can be obtained from a resolution in y:

R=R1+ R2=18+12.96=30.96 kN(↓)

(This is nonzero, that is why the resultant should have a force component. Otherwise the resultant
could either be a couple or equilibrium, both needing a slightly different analysis.)

In order to locate the resultant, assume that it stands right to the left endpoint at a distance x R

then write the moments about the same endpoint as follows:

∑ M i
(l) :−30.96⋅xR=−18⋅1.6 – 12.96⋅3.2

that yields x R=2.270 m .

Exercise 2

Find the resultant of the distributed load 
shown in the figure.

Solution

Let the distributed load be split into a uniform and a linear part
with an intensity ranging from zero to its maximum:

3
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Calculate partial resultants and mark their position in the figure:

R1=

R2=
Summing up (signed) partial resultants:

R=R1+R2=
Moment of the resultant must equal the sum of all moments of partial resultants about any points
of the plane. Location of the resultant is obtained therefore from a moment equation:

∑ M i
(   ) :

This implies the position of the resultant to be 

xR=
Sketch the resultant in the figure.

Example 3

Find the resultant of the distributed load 
shown in the figure.

Solution by a uniform and a linear load

Let  the  intensity  of  the  uniform  load  be  equal  to  the  starting
intensity.  The  linear  load  component  has  to  have  therefore  an
intensity  at  the  other  end  that  is  still  missing  from the  original
intensity:  −1.4+q l=3.8→ql=5.2kN/m . Two component loads and their resultants are now as
follows:

4

= +
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Partial resultants:

R1=−1,4⋅5,0=−7,0kN(↑)

R2=
1
2

5,2⋅5,0=13kN(↓)

The magnitude of resultant is obtained from resolution:

R=R1+ R2=−7.0+13.0=+6.0kN(↓)

(This is nonzero, that is why the resultant should have a force component. Otherwise the resultant
could either be a couple or equilibrium, both needing a slightly different analysis.)

In order to locate the resultant, assume that it stands right to the left endpoint at a distance x R

then write the moments about the same endpoint as follows:

∑ M i
(l) :−6.0 xR=7.0⋅2.5– 13.0⋅3.333

that yields x R=4.305m .

Solution by two non-overlapping linear loads

One might give way to the temptation of calculating the resultant
from two triangles that can originally be shown in the figure. For
that  purpose,  the  position  of  zero of  the  load function should be
obtained first, preferably with reference to two similar triangles:

1.4
 x

=
  3.8
5.0−x

  →   x=1.346 m,  5.0− x=3.654 m

Component loads and their resultants are now as follows:

Partial resultants:

R1=−
1
2

1.4⋅1.346=−0.9422 kN (↑)

R2=
1
2

3.8⋅3.654=6.943kN(↓)

The magnitude of resultant is obtained from resolution:

R=R1+ R2=−0.9422+6.943=+6.001 kN(↓)

(This is nonzero, so the resultant will still be determined as earlier...)

The distance x R  from the left is obtained from moments about the same endpoint as follows:

∑ M i
(l) :−6.001 xR=0.9422⋅0.4487 – 6.943⋅3.782

that yields x R=4,305m .
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Exercise 3

Find the resultant of the distributed load 
shown in the figure.

Solution

Let the distributed load be split into two linear parts distributed
over  the  entire  length  such  that  their  intensities  are  zero  and
maximum at  the two endpoints.  Draw the component loads and the position of their  (partial)
resultants into the figure:

Calculate partial resultants and mark their position in the figure:

R1=

R2=
Summing up (signed) partial resultants:

R=R1+R2=
Moment of the resultant must equal the sum of all moments of partial resultants about any points
of the plane. Location of the resultant is obtained therefore from a moment equation:

∑ M i
(   ) :

This implies the position of the resultant to be 

xR=
Sketch the resultant in the figure.

Different kinds of distribution of loads

Linear  distributed  loads  can  further  be  classified  according  to  the  measure  over  which  the
distribution is  defined. Loads distributed  over (member) length are,  e.g.,  gravity and wind load
where the resultant is obtained as a product of the intensity and the length of the loaded member (all
examples shown so far shared this property). Another kind of distributed loads are projected, e.g.,
the load of snow. In such cases,  the length of distribution is  understood as a projection of the
member length and the resultant is obtained by a multiplication with that projected length.
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Example 4

a) Find the resultant of the uniform load distributed 
over the length of the beam as shown in the figure.

Solution

The length of distribution,

l=√52
+122

=13.00 m

Magnitude of the resultant is obtained by multiplication:

R=4⋅13.00=52kN

The resultant bisects the load diagram vertically and is directed downwards.

b) Find the resultant of the uniform load distributed 
over the length of the beam as shown in the figure.

Solution

The length of distribution,

l=√52
+122

=13.00 m

Magnitude of the resultant is obtained by multiplication:

R=4⋅13.00=52kN

This  oblique  force  is  perpendicular  to  the  line  of
distribution and makes the same angle with the vertical
direction as the line of the load makes with the horizontal.
Its components are as follows:

Rx=52⋅   5

√52+122
=20 kN(→)

R y=52⋅   12

√52+122
=48 kN (↑)

c) Find the resultant of the uniform projected load 
as shown in the figure.

Solution

Now the length of distribution is the horizontal projection:

l=12m

Magnitude of the resultant is obtained by multiplication:

R=4⋅12.00=48kN

The resultant bisects the load diagram vertically and is directed downwards.
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Exercise 4

a) Find the resultant of the uniform load distributed 
over length as shown in the figure.

Solution

The length of distribution,

l=
Magnitude of the resultant is obtained by multiplication:

R=
Location and direction of the resultant:..........................................

b) Find the resultant of the uniform load distributed 
over length as shown in the figure.

Solution

The length of distribution,

l=
Magnitude of the resultant is obtained by multiplication:

R=
Location and direction of the resultant:..........................................

Horizontal and vertical components of R:

Rx=

R y=

c) Find the resultant of the uniform projected load 
as shown in the figure.

Solution

The (horizontal) length of distribution,

l=
Magnitude of the resultant is obtained by multiplication:

R=
Location and direction of the resultant:..........................................

Loads distributed over oblique lines
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Resultants of loads that act perpendicularly to their line of distribution can also be obtained in an
alternative way (in addition to wind load, water pressure also belongs to this kind of loads). After a
careful consideration of the problem one can conclude that vertical and horizontal components of an
oblique force can even be dealt with as distributed loads independent of each other.

Example 5

Find the resultant of the uniform load distributed 
over length as shown in the figure.

Solution

A perpendicular load can be replaced by two component loads
distributed over horizontal and vertical projected lengths.

The  resultant  of  the  horizontal  load  distributed  over  a
height of 5 metres has a rightwards resultant:

Rx=4⋅5=20 kN(→)

The resultant of the vertical load distributed over a width
of 12 metres has an upwards resultant:

R y=4⋅12=48 kN(↑)

Both  resultants  bisect  the  corresponding  load  diagram
and they add to an oblique resultant in the middle of the line:

R=√202+482=52.00 kN(↗)

Its inclination to the horizontal is

αR=arctan
48
20

=67.38 °

Exercise 5

Find the resultant of the uniform load distributed 
over length as shown in the figure.

Solution

Replace the load acting on the line by two projected load
components.

Find  the  resultants  of  both  horizontal  and  vertical
components:

R x=

R y=
Draw them into the figure and calculate the resultant of
two components:

R=
αR=
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Generally speaking it is easier to perform calculations with horizontal and vertical load components,
which supports the convention of leaving the resultant in components instead of re-expressing it in
terms of magnitude and direction.

Water  pressure also acts  on surfaces  as  a
distributed load. It is characterized by the
property that its intensity is always locally
perpendicular  to  the  surface  and  is
proportional to the depth of water. It seems
to  cause  complications  in  finding  the
resultant as the problem requires operations
on a force of variable intensity and curved
line  of  distribution.  In  fact,  the  calculation  is  surprisingly
simple due to the two properties mentioned above.

Horizontal  component  can  be  obtained  as  a  resultant  of  a
projected  linear  load  with  a  triangular  diagram:  that  force
must pass the lower third-point of the height.

The  intensity  of  the  vertical  load  component,  however,  is
always  proportional  to  the  depth  of  water.  With  an
appropriate  scale  chosen,  its  function  of  intensity  can  be
demonstrated by the plane shape enclosed by the dam and the
water level. If both the area and centroid of that plane shape
are known, then the vertical component of the resultant of
water pressure can also be found.

Centroid of composite shapes

Coordinates of the  centroid of a shape embedded in the plane  yz can be found by the following
formulae:

yC=

∫
A

y d A

∫
A

d A
=

Q z

A
zC=

∫
A

zd A

∫
A

d A
=

Q y

A
,

where A represents the area, and Q z  and Q y  stand for the first moment taken about axes z and y.
The first moment of a shape about an axis is obtained as a (signed) product of the area of the shape
and the distance between the centroid of the shape and the axis; thus, it is measured in, e.g., in m3.

The centroid of a composite shape can be located by splitting the shape into simpler ones with
known centroidal coordinates. This way, both the area and first moment of the shape can be found
as the sum of composite areas and first moments, respectively: 

A=∑
i
∫
A i

d A=∑
i

A i ,

Qz=∑
i

Q zi=∑
i

yCi A i ,
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Q y=∑
i

Q yi=∑
i

zCi Ai .

Here Ai ,Q zi ,Q yi  denote the area and first moments about axes z and y of a shape component, while
yCi , zCi  are coordinates of the centroid of each shape component. 

This method can only be applied if the centroid of all (elementary) shape components are known. It
is worth memorizing the location of centroid of four elementary shapes shown in the figure below:

Using  the  technique  of  components  introduced  above,  it  is  easy to  see  that  the  centroid  of  a
symmetric  object  must  be  incident  to  the  axis  of  symmetry,  since  first  moments  of  shape
components about the axis of symmetry on either side of the same axis are negative of each other,
so the resultant first moment becomes zero.

Example 6

Locate the centroid of the shape shown in the figure using 
the method of decomposition and make a final sketch.

 

Solution

Since the shape is symmetric,  its  centroid is incident to the
axis of symmetry. For this reason the coordinate system is set
such that axis z coincides with the axis of symmetry; therefore,
only a coordinate z of the centroid should be calculated.

Let the shape be split  into three rectangles as shown in the
figure.

Total area of the shape equals the sum of area components:

A=A1+A2+A3=200⋅40+220⋅50+200⋅40=27000 mm2 .
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Total first moment of the shape about axis y can be found as the sum of first moments of three
shape components about the same. The first moment of each shape component can be found as
the product of its area and distance measured from axis y:

Q y=Q y1+Q y 2+Q y 3=

200⋅40⋅100+220⋅50⋅(150+25)+200⋅40⋅100=3525000 mm3

Coordinate  z (i.e.,  distance  measured  from  axis  y)  of  the
centroid of the composite shape is then found as the ratio of the
total first moment about axis y and the area:

zC=
Q y

A
=

3525000
27000

=130.6 mm

Finally, display the centroid together with the distance  zC in a
final sketch.

Final sketch:

Exercise 6 

Locate the centroid of the I section shown in the figure using 
the method of decomposition and make a final sketch.
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                                                                                                                Final sketch:

The centroid of a composite shape can also be located by completing the shape by (some) simple
shape(s)  in a  way that  the resultant  shape is  still  simple,  even if  large,  and the position of its
centroid is known. The resultant area in this case can be obtained as the difference between the
completed (total) area and the area of completion: 

A=A total−A completion .

First moments are obtained in a similar manner by subtracting the first moment of the area of 
completion from that of the total area:

Qz=Q z ,total−Q z ,completion ,

        Q y=Q y, total−Q y ,completion .

Example 7

Locate the centroid of the shape shown in the figure using 
the method of completion and make a final sketch.

Solution

Since the shape is symmetric, its centroid is incident to the axis
of symmetry. For this reason the coordinate system is set such
that axis z coincides with the axis of symmetry; therefore, only
a coordinate z of the centroid should be calculated.

Let  the  shape  be  completed  to  a  rectangle  as  shown in  the
figure.  Total  area  of  the  shape  equals  the  difference  of  the
large and small rectangles:

A=A1−A2=300⋅200−220⋅150=27000mm2 .

Similarly, total first moment of the entire shape about axis  y
can be found as the difference of first moments of rectangular
shapes about the same: 

Q y=Q y1−Q y2=300⋅200⋅100−220⋅150⋅75=3525000 mm3 .

Coordinate  z (i.e.,  distance  measured  from  axis  y)  of  the
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centroid of the composite shape is then found as the ratio of the total first moment about axis y
and the area:

zC=
Q y

A
=

3525000
27000

=130.6 mm

Finally, display the centroid together with the distance zC in a final sketch.

Final sketch:

Exercise 7 

Locate the centroid of the I section shown in the figure 
using the method of completion and make a final sketch.

Solution 

                                                                                                            Final sketch:
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Example 8

Locate the centroid of the shape shown in the figure. 
Make a final sketch.

Solution

Let the shape be split into a quarter-circle and a triangle as
shown in the second figure. 

The  total  area  of  the  shape  equals  the  sum  of  area
components:

A=A1+A2=
1
2
⋅50⋅20+

1
4
⋅50

2
⋅π=500+1963=2463cm

2
.

Total first moment of the shape about axis y can be found as
the sum of first moments of the rectangle and the quarter-
circle:

Q y=Q y1+Q y 2=500⋅
2
3
⋅50+1963⋅(50−

4⋅50
3⋅π

)=73170cm
3

.

Coordinate  z (i.e.,  distance  measured  from axis  y)  of  the
centroid of the composite shape is then found as the ratio of
the total first moment about axis y and the area:

zC=
Q y

A
=

73170
2463

=29.71 cm

In order to get coordinate y of the centroid, let first moments
of area components about axis z be calculated:

Q y=Q y1+Q y 2=500⋅
1
3
⋅20−1963⋅

4⋅50
3⋅π

=−38330cm
3

.

(Warning: irst moment of the quarter-circle is negative since its centroidal coordinate  y is also
negative.)

Coordinate y (i.e., distance measured from axis z) of the centroid of the composite shape is then
found as the ratio of the total first moment about axis z and the area:

yC=
Q z

A
=

−38330
  2463

=−15.56 cm .

Finally, display the centroid together with the distances yC and zC in a final sketch.

Final sketch:
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Exercise 8

Locate the centroid of the shape shown in the figure. 
Make a final sketch.

Solution
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Rigid bodies

Analysis of motions of rigid bodies is based on the assumption that a rigid body is equivalent to a
set of connected (elementary) massive particles. Those particles are also in interaction with each
other, implying that each particle moves under the effect of forces acting upon it, although still
obeying the  conditions  imposed by the concept  of  rigidity. Forces  due to  internal  connections,
however,  cancel  each  other  while  summing  up  (integrating)  equations  of  motion  written  for
individual particles. As a result, rigid-body motion is influenced only by forces that are external to
the body.

Kinematics of rigid bodies

As in the case of particles, a precise description of the position of the rigid body should be given
first. The discussion will now be restricted to two-dimensional systems only: each point is assumed
to  move  parallel  to  a  plane  fixed  beforehand.  Plane  motion  of  a  body  can  be  translational,
rotational about a fixed axis or a general two-dimensional motion.

Translation

A motion is called translational if all points of the body undergo the same displacement with respect
to  their  original  position.  Consequently, the  body does  not  suffer  any rotation  compared to  its
original position and all its points share the same velocity and acceleration. In such a case (and only
in such a case) it is possible to speak about the velocity of a rigid body.

Rotation about a fixed axis

A motion  is  called  rotational  if  all  points  of  the  body  rotate  about  the  same  fixed  axis.  In
comparison to the original configuration, angular displacement (rotational angle) is common to all
points. Consequently, its rates of change in time, i. e., angular velocity and angular acceleration are
also common to any points (these values can therefore be regarded as kinematic parameters of the
body). At the same time, (linear) velocity and acceleration of an individual point depends on the
distance between the point and the axis of rotation (recall that v=ω⋅r , an=ω

2
⋅r , aτ=κ⋅r ), that is, it

can vary from point to point. For this reason, it makes no sense to speak about  the velocity of a
rotating body.

General plane motion

A general plane motion can always be regarded as a combination of a rotational motion about an
arbitrarily chosen axis and a translational motion defined by the displacement of the same axis. In
doing so, however, the pivot point of the body (where the axis of rotation is thought to pass) must
always be specified. The translational component is defined by the displacement of the pivot point.
Since angular velocity and angular acceleration are both zero for the translational part, they cannot
depend on the choice of the pivot point either. Vectors of (linear) velocity and acceleration of an
individual point can be formed as a vectorial sum of components calculated from translational as
well as rotational parts of the motion.

A pivot point can be chosen freely (it can either be an external point with an imaginary connection
to the physical body). In most of cases, however, two points of particular importance are used. One
of them is the centre of mass of the body, the other is a point whose velocity is just zero in a time
instant. This latter point is referred to as instantaneous centre of rotation of the body.

Since  the  velocity  of  the  instantaneous  centre  is  zero,  only  the  effect  of  rotation  should  be
considered in calculating the velocity of another point (warning: it does not extend automatically to

1
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accelerations).  Thus,  magnitude  of  the  velocity  of  an  arbitrary  point  depends  only on  angular
velocity and the distance between the point and the instantaneous centre; the direction of velocity is
always perpendicular to the radius drawn to the point from the instantaneous centre. It follows from
the  above  facts  that,  knowing  the  vectors  of  velocity  in  two  points  within  a  rigid  body,  the
instantaneous centre can be obtained. Draw a line perpendicular to each vector of velocity through
the point it belongs to: those two lines intersect exactly at the instantaneous centre.

Example 1

A ladder of length l=4 m supported against the wall is sliding. 
downwards. After a while, the ladder makes an angle α=50 °
with the horizontal. In the same time the bottom of the ladder 
travels with a velocity v0=2m/s and acceleration a0=0.5 m/s2

(both directed apart from the wall).
Find the velocity and acceleration of the top of the ladder still 
contacting the wall at that instant. 

Solution

Horizontal and vertical components of velocity of the top of the
ladder at the wall can be written separately in terms of parameters
of both translational and rotational motions of the bottom point
(those components are shown in the figure in the middle). Due to
the continuous contact with the wall, horizontal component of the
velocity should be zero:

v lx=−v0+ω⋅l⋅sin α=0 ,

hence angular velocity of the ladder is ω=0.6527 rad/s (↷) .

The vertical component itself is the velocity in case: 

v ly=0+ω⋅l⋅cos α→  v ly=1.678 m/s (↓)

With  a  similar  reasoning,  acceleration  of  the  top  point  can  be
written  in  terms  of  parameters  of  the  bottom  one  by  three
components shown in the figure at the bottom as well. Due to the
continuous  contact  with  the  wall,  horizontal  components  of  the
acceleration should add up to zero:

alx=−a0+κ⋅l⋅sinα−ω
2
⋅l⋅cosα=0 ,

hence angular acceleration of the ladder is κ=0.5206 rad/s2
(↷)

The vertical component itself is the acceleration in case: 

aly=0−κ⋅l⋅cosα−ω
2
⋅l⋅sinα→ aly=−2.644m/s2

(↓)

Finding velocity by the use of the instantaneous centre

The instantaneous centre of a moving rigid body is located at the point
(rigidly attached to the body) whose velocity is zero. Velocity pertaining
to a point of the body is always perpendicular to the line drawn through
the instantaneous centre, and its magnitude is found as the product of the
distance from the centre and the angular velocity.
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In the current problem, known directions of velocities make sure that the instantaneous centre
should be incident to both lines o and f; yielding formulae

v0=ω l sinα ,   v l=ω l cosα .

Thus,
v0

sin α
=

vl

cosα
→ v l=

v0

tanα
, that coincides with the result obtained earlier.

Exercise 1 

Angular velocity, angular acceleration, as well as the velocity 
and acceleration of the centre of mass of a wheel of radius 
R=0.5 m is given.
Find velocity at the bottom point and at point A , as well as 
the acceleration at point B .
ω=3 rad/s ,κ=1.6 rad/s2, vC=1.2m/s , aC=2.2m/s2

Solution

Velocities are calculated from the velocity of the centre of mass as a translational part and from
the angular velocity ω  about the same point as a rotational part. At the bottom point:

vx=

v y=
At point A:

vAx=

vAy=
The components of acceleration are obtained from the acceleration of the centre of mass as a
translational  part  and  from a  rotation  about  the  same (with  angular  velocity  ω  and  angular
acceleration κ ) as follows:

aBx=

aBy=
The translational motion and the rotational motion about a fixed axis represent, of course, only two
special cases of a general plane motion. A roataion about any fixed axis can therefore be defined as
a  motion whose instantaneous centre  is  always  located at  the  axis  of  rotation.  Conversely, the
rotation, angular velocity and angular acceleration are always zero for a translational motion, hence
no instantaneous cenre can be defined for that special case.

Kinetics of rigid bodies

Problems in 2D require three scalars to specify the exact position of a rigid body in the plane, so
any motion can be described by three independent equations. In order to set up those equations,
theorems based on the summation of laws of motion for particles are used.

Euler's first law of motion (an extension of Newton's second law to rigid bodies)

Theorem: The cenre of mass of a rigid body moves exactly in a way as if it was a massive particle,
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acted upon by the same loads as the rigid body is exposed to and having the same mass as the rigid
body has. (Formally, R=m⋅aC .)

As can be seen clearly, the point whose acceleration is proportional to the net force acting on the
body must be specified. Euler's first law can be transformed into scalar equations exactly as it has
already been  shown for  material  particles,  and there  can  also  be  found  only  two independent
equations among infinitely many possibilities.

Euler's second law

A counterpart  of  the  former  theorem concerns  the  rate  of  change  of  velocity  of  the  rotational
motion. It will be presented as an adaptation of Newton's second law to rotations. According to the
vocabulary  of  linear  and  rotational  kinematic  parameters,  'acceleration'  should  be  replaced  by
'angular acceleration'. The role of 'mass' gets transferred to the  moment of inertia about a chosen
axis and, instead of considering force resolutions, moments of forces and couples about the same
axis should be calculated. Thus, the theorem will assume the general form M=I⋅κ  in our two-
dimensional  problems.  The  chosen  axis  usually  passes  through  either  the  centroid  or  the
instantaneous centre, so the theorem can be written in two typical forms as follows:

Theorem: The angular acceleration of a rigid body is proportional to the moment of net forces and
couples about the centre of mass of the body. The factor of proportionality is then the moment of
inertia taken about the centre of mass of the body. (Written as a formula, MC=IC⋅κ .)

Theorem: The angular acceleration of a rigid body is proportional to the moment of net forces and
couples about the instantaneous centre of rotation. The factor of proportionality is then the moment
of  inertia  taken  about  the  instantaneous  centre  of  rotation  of  the  body. (Written  as  a  formula,
M 0=I 0⋅κ .)

Moment of inertia of a rigid body

The moment of inertia of a rigid body about an axis is defined as a sum of products r2 dm  over all
elementary massive particles the body is composed of, where dm denotes elementary mass and r is
the distance between the particle and the axis. Written as a formula, I=∫

m

r2 dm .

Within the scope of this subject,  only kinetics of either cylindrical bodies or long, straight and
slender rods are dealt with, their moments of inertia are shown in the following figure.

Moments of inertia of a cylinder and a straight rod

It is true in general that the moment of inertia of highest importance is that about the center of
mass.This has the smallest value and makes possible to obtain moments of inertia about any further
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axis passing through a point P by means of the Parallel axis (or Steiner's) theorem: IP=IC+m⋅r PC
2 ,

where r PC  denotes the distance between points P and C. 

This means that it should have been sufficient to specify the moment of inertia about the centre of
mass, since:

IA=IC+m⋅r AC
2

=
1
2

m⋅R
2
+m⋅R

2
=

3
2

m⋅R
2

I A=IC+m⋅r AC
2

=
m⋅l2

12
+m⋅( l

2 )
2

=( 1
12

+
1
4 )m⋅l2

=
m⋅l2

3

When solving a problem, one can choose among resolution equations and two forms of Euler's
second law.

Example 2 

Find the angular acceleration of the bar of length l=1.2 m and weight 
G=500 N, as well as the force exerted on the bar by the support A . 
The bar starts from rest under the action of the force F=300 N. 

Solution

The bottom figure shows forces acting upon the body in solid lines, as well
as angular acceleration and the linear acceleration of the centre of mass in
dotted lines. Since the body rotates about a fixed point A, these latter two
are not independent of each other: aC=κ⋅l /2 .

The  body starts  from rest,  so  its  initial  angular  velocity  equals  zero,
implying that normal acceleration of the centre of mass is also zero.

The mass of the bar is m=
500
9.81

=50.97kg .

Euler's first law in x and y yields that:

A x+300=50.97⋅aC

A y –G=50.97⋅0

Due to the fixed axis, Euler's second law can be written in both for the
centre of mass and for the centre of rotation:

300⋅0.6−Ax⋅0.6=
50.97⋅1.22

12
⋅κ

300⋅1.2=
50.97⋅1.22

3
⋅κ

Clearly, only three out of these four equations are needed for the solution. From the last one,

κ=14.71 rad/s2
(↶)

Plugging this back into the first and second equations we have

A x=150.0N(→) , A y=500.0 N(↑) .
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Exercise 2

A beam of mass m=15 kg and length l=1.5 m is held at both ends.
Find the angular aceleration of the beam if one end is suddenly released.
Find the force needed at the other end at the same instant in order to 
prevent it from moving.

Solution

Draw forces acting on the beam on release. Mark the expected
rotation, angular acceleration as well as the acceleration of the
centre of mass.

Write two equations based on Euler's first law:

∑ F ix :

∑ F iy :
Calculate moments of inertia about axes passing through the centre of mass and of rotation:

IC= I0=
Write Euler's second law about the centre of mass and centre of rotation:

∑ M i
(C):

∑ M i
(0) :

Solve the system of equations:
κ=
A x=

A y=

Rolling wheel

The motion of a wheel rolling on a plane, horizontal or inclined, can be classified according to
whether or not its contact point has a relative velocity with respect to the plane. If yes, then the we
speak about rolling with slipping: in that case, friction is termed kinetic friction and acceleration of
the centre of mass is independent of angular acceleration. If velocities of the plane and the contact
point of the wheel coincide, the motion is called rolling without slipping or pure rolling. A wheel
rolling without slipping has always its instantaneous cenre of rotation located at the point of contact.
At the same time, velocity of the centre of mass is related to angular velocity as vC=ω⋅R , as well
as acceleration of the centre of mass is similarly related to angular acceleration ( aC=κ⋅R ). In the
case of pure rolling, the force of friction, termed static friction is independent of the tightening force
or normal force between contacting parts (that is why there is no compulsory sense of its assumed direction: at

most a negative result means its reversion in the final form), but the law |F f|≤μ⋅N  of static friction can only
be satisfied with sufficiently large values of the coefficient of friction; that inequality must therefore
be checked.

6
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Example 3 

A wheel of mass m=20 kg and radius R=0.30 m is driven by a torque of M=50 Nm 
on a horizontal plane. 
Find the acceleration of the centre of mass if the wheel rolls without slipping. 
Find minimum coefficient of friction required for a pure rolling.

Solution

The figure to the right shows the driving torque in a clockwise sense and all
other forces exerted upon the wheel. The torque would result in a leftwards
slipping  in  the  lack  of  friction,  so  the  force  of  static  friction  is  rather
assumed to point to the right, though 'wrong' assumption of a  static force
component  would  not  influence  the  final  result.  Dotted  lines  denote
expected senses of angular acceleration and acceleration of the centre of
mass. Due to pure rolling these latter ones are not independent: aC=κ⋅R

Euler's first law in horizontal and vertical directions:

20⋅9.81 – N=20⋅0

F f=20⋅aC

The first equation yields N=196.2N  directly but there is no unique solution for the second one.

In order to write also Euler's second law, moments of inertia are needed. About the centre of mass

it reads: IC=
20⋅0.32

   2
=0.9 kgm2 . Pure rolling causes the contact point to be the instantaneous

centre of rotation; the moment of inertia about that is  I 0=
3
2

20⋅0.3
2
=2.7kgm

2
. Even though

not both of them will be used in the solution, write Euler's second law about for the centre of
mass and the contact point as well:

∑M i
(C ):−50+F f⋅0.3=0.9⋅(−κ)

∑M i
(0 ):−50=2.7⋅(−κ)

From the last one, κ=18.52 rad/s2
(↷) ; thus, aC=5.556 m/s2(→)

Remark: If the instantaneous centre of rotation is known, it can be regarded as a thumb rule that Euler's second law
written about it will result in an equation with relatively few unknowns.

From any of the two remaining equations, F f=111.1 N(→) .

From the law of friction, 111.1<μ⋅196.2→  μ>0.5663

Exercise 3

A wheel of mass m=20kg and radius R=0.30 m is driven 
by a horizontal force F=50N of on a horizontal plane. 
Find the acceleration of the centre of the wheel in pure rolling. 
Find minimum coefficient of friction required for a pure rolling.

Solution

Draw all forces exerted upon the wheel as well as expected acceleration of
the center of mass and angular acceleration of the wheel into the figure.

Write two equations of Euler's first law:

7
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∑ F ix :

∑ F iy :
Calculate moments of inertia about the centre of mass and the instantaneous centre of rotation:

IC= I0=
Write Euler's second law about both points:

∑ M i
(C):

∑ M i
(0) :

Solve the system:

κ= ; thus, aC=

N=

F f=
The minimum coefficient of friction required for pure rolling:

μ>
|F f|

 N
=

Example 4 

A cylinder of mass m=6kg and radius R=0.2m rotates with an angular velocity ω0=20 rad/s 
when it is put onto a horizontal plane. The velocity of the centre of mass is zero on first touch.
What time does it take for the cylinder to reach pure rolling if 
the coefficient of kinetic friction is μ=0.2?

Solution

The bottom point of the cylinder is still moving at the instant of first touch,
so there is  a rolling with slipping. The bottom point moves backwards,
causing the force of friction to point forward, but since that is the only
force having a moment about the central axis of the cylinder, the sense of
both the angular acceleration and horizontal acceleration of the centre of
mass is uniquely given (even though these two are now independent).

Euler's first law in vertical direction implies

6⋅9.81– N=6⋅0 , that is, N=58.86 N  

The force of kinetic friction: F f=0.2⋅58.86=11.77 N

Euler's first law in horizontal direction reads

11.77=6⋅aC , from which the acceleration of the centre of mass is aC=1.962m/s2
(→) .

Since the bottom point of the cylinder is not an instantaneous centre of rotation, Euler's second
law can only be written about the centre of mass:

8
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11.77⋅0.2=
6⋅0.22

    2
⋅κ that yields an angular acceleration, κ=19.62 rad/s2

(↶) .

With respect to the preceding results, angular velocity and the velocity of the centre of mass can
be written, as far as pure rolling is reached, as follows: ω=20– 19.62⋅t and vC=1.962⋅t .

Pure rolling starts when the velocity (vC−ω⋅R)  of the bottom of the cylinder becomes zero:

1.962⋅t−(20−19.62⋅t ) 0.2=0→ t=0.6796s

Exercise 4

A cylinder of mass m=6 kg and radius R=0.2 m is free of rotation when put onto the 
horizontal ground. The velocity of its centre of mass is vC 0=3 m/s at the instant of first touch. 
What time does it take for the cylinder to reach pure rolling if the coefficient of kinetic 
friction is μ=0.2 ?

Solution

Draw all forces exerted upon the cylinder into the figure and mark the
acceleration of the centre of mass as well as the angular acceleration.

Write two equations of Euler's first law:

∑ F ix :

∑ F iy :
From the solution of the system,

N=  F f=

aC=
Calculate moments of inertia about the centre of mass:

IC=
Write Euler's second law about the centre of mass:

∑ M i
(C):

The angular acceleration is obtained from it as
κ=

The centre of mass of the cylinder performs auniform accelerating motion until pure rolling is
reached.  Moreover,  the  simultaneous  rotational  motion  also  accelerates  uniformly;  thus,  time
functions of velocity of the centre of mass and of angular velocity are as follows:

v (t )=  ω(t )=
Pure rolling starts when the velocity (vC−ω⋅R)  of the bottom of the cylinder becomes zero;

thus, the required time is t=

9
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Tip-over stability analysis

Tipping over of bodies on a flat surface is a phenomenon closely related to rolling. Considering the
finite domain of contact, the normal force is not concentrated any longer but rather distributed over
a length or surface. Since that force can only be compression, its resultant should act inside the
domain of contact in any case; in limit  it  is located at  the border of the domain.  In a tip-over
analysis one must check moments causing tipping against those tending to prevent the body from it
(at the same time it is assumed that the point of tipping does not slip; this must be checked after the
calculation having been completed).

Example 5

Find force F  required for the tip over of a body of side length 
a=3m and mass m=50 kg laid on a horizontal surface if the 
direction of the force is as indicated in the figure.

Solution

The figure illustrates all forces exerted upon the body at the instant of
tip over. Since a tip over starts even at infinitesimally small clockwise
angular acceleration,  the solution will  be obtained in limit  from an
equation  (that  is  why  the  real  rotating  motion  and  therefore  the
moment of inertia of the body can be left out of consideration).

Euler's second law when tip over starts reads

50⋅9.81⋅1.5– F⋅
     3

√32
+1.52

⋅1.5=IN⋅0 ,

which solves to F=548.4N .

Remark:

It  was assumed that the corner of contact does not slip, that is,  its
acceleration is zero in all directions. By writing Euler's first law in two directions, two equations
are set up that serve to obtain the force of friction and normal force as well. Minimum coefficient
of friction is obtained from the law of friction afterwards.

Exercise 5

A concrete block of height 1 m and width 30  cm weighs m=180 kg.
The block is laid on a slope of inclination α=20°  at its shorter side.
Check the block for tipping over.

Solution

There are alternative solutions to the problem. A dynamical approach is
taken first: the sense of angular acceleration of the block about the axis of
tipping (the bottom right corner) is checked first. If it accelerates upwards, one can conclude that
the normal force does not pass through the corner but is offset to the left and the block actually
does not move at all. Due to the opposite sense of acceleration; however, the block tips over.

Draw all forces exerted upon the block into the figure with the assumptions taken above.

Write  Euler's  second law about  the  assumed centre  of  rotation  (the  moment  of  inertia  is  yet
unknown but is surely positive; the moment of weight should be resolved for convenience into
components parallel and perpendicular to the slope):
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∑ M i
(N ):

The sign (and thus, the sense) of angular acceleeration is obtained as:

0     κ  (    )
Conclusion: the block                                                

Rolling resistance

A rolling wheel, in fact, is not a rigid body. As a result of that, a line rather than a point of contact is
formed; accordingly, the normal force is  not concentrated to a point,  not even it  is required to
remain centred at the idealized contact as the resultant of a distributed force. When looking for an
equilibrium, the force is required only to remain inside the domain of contact. In the case of a
rolling motion, an equivalent force-couple system for the normal force is
found such that  the  force  component  is  set  back to  the  ideal  point  of
contact  and  is  completed  by  a  couple  called  the  moment  of  rolling
resistance. The sense of that moment is opposite to the angular velocity, its
magnitude  depends  on  the  normal  force  and  a  factor  λ  of  rolling
resistance (characteristic of the bodies in contact) as Γ=λ⋅N .

Example 6

A cylinder of radius r=0.25 m is left on its own in rest on the top of a slope with an
inclination of α=30° . The cylinder starts moving downwards with a pure rolling motion, 
its factor of rolling resistance λ=0.04m.
Find the distance needed for the centre of the cylinder to reach the velocity vC=10m/s.

Solution

The figure to the right shows all forces exerted upon the cylinder under the
assumption  of  that  it  rolls  without  slipping  downwards.  It  means  that
angular  acceleration and angular  velocity are  both clockwise,  while  the
moment  Γ  of rolling resistance has an opposite sense with a magnitude
Γ=λ⋅N .

Pure rolling makes the instantaneous centre to be known as the point of
application  of  force  N,  now thought  to  pass  through  the  centre  of  the
cylinder.  For  the  same  reason,  aC=κ⋅r ,  showing  the  dependence  of
acceleration and angular acceleration on each other.

Write Euler's first law in directions parallel and perpendicular to the slope:

∑ F i↙:m⋅9.81⋅cos30 °−N=m⋅0

∑ F i↘:m⋅9.81⋅sin 30 °+F f =m⋅aC

From the first one we have N=8.496⋅m , so the rolling resistance is Γ=0.3398⋅m .

Euler's second law can now be written for both possible points:

∑ M i
(C ): F f⋅0.25+0.3398⋅m=

m⋅0.252

   2
⋅(−κ)
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∑M i
(0 ):−m⋅9.81⋅sin 30°⋅0.25+0.3398⋅m=

3m⋅0.252

   2
⋅(−κ)

After division by m in the second equation, κ=9.455 rad/s2

(The result does not depend on mass m, that is why it has not been given.)

Acceleration of the centre due to pure rolling: aC=9.455⋅0.25=2.364 m/s2 . 

The distance required to reach the desired velocity with the acceleration above:

102
=02

+2⋅2.364⋅s→  s=21.15 m

Remark: The force of static friction could be obtained from either of two unused equations (now as a function of m).
The minus sign of the result F f =−2,541⋅m  refers to a force opposite the assumed direction. In a folowing step it
could also be found that the minimum coefficient of static friction needed for a pure rolling is μ=0.2991 .

Exercise 6

A cylinder of radius r=0.25 m and mass m=8 kg rolls up against the slope of inclination 
α=30 ° without slipping. Initial velocity of the centre of the cylinder is vC 1=14 m/s.
Find the distance covered by the cylinder if the factor of rolling resistance is λ=0.04 m.

Solution

Draw all forces exerted upon the body, as well as kinematic variables of
the centre of mass and expected senses of accelerations into the figure.

Write Euler's first law in directions parallel and perpendicular to the slope:

∑ F i↘:

∑ F i↙:
From the first equation we get

N=  Γ=
Calculate moments of inertia for both the point of contact and instantaneous centre of rotation:

IC= I0=
Write Euler's second law for both possible points:

∑ M i
(C):

∑ M i
(0) :

Observe that only the angular acceleration is unknown in the second one. Solve that equation:

κ=
Acceleraation of the centre of mass due to pure rolling:

aC=
The distance until stop calculated from initial and final velocity and acceleration of the centre:

12
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Kinetics of rigid bodies

In  a  way quite  similar  to  that  shown in  kinetics  of  particles,  there  can  also  be  derived  some
theorems for motions of rigid bodies that concern initial and final instants of the motion only. The
present  lesson  gives  a  review on  those  theorems  together  with  some  associated  concepts;  the
discussion is completed by examples as usual.

The impulse-momentum theorem

Euler's first law states that the centroid of a rigid body moves exactly like a particle under the same
loads. Analogously to material particles, linear momentum and a theorem of its change can also be
interpreted for a rigid body.

Def.: Linear momentum of a body equals the product of its mass m and the velocity vC of its centre
of mass.

Theorem: The change of linear momentum of a rigid body in a time period equals the impulse of

forces exerted on the body in the same time period. Written as a formula, m⋅(vC 2 – vC 1 )=∫
t1

t2

R d t .

It can be seen from the theorem that torques have no influence on the motion of the centre of mass
of the body.

The theorem is applicable in cases similar to those discussed in kinetics of patrticles.

The angular impulse-momentum theorem

Def.: Angular momentum of a body about an axis equals the product of its moment of inertia about
the same axis and its angular velocity.

The angular impulse-momentum theorem is stated in two versions (about the central axis and about
the axis of rotation) separately:

Theorem:  The change of  angular  momentum of  a  rigid  body about  the  central  axis (i.e.,  axis
passing through the centre  of mass)  in a time period equals the integral of moments of forces

exerted on the body about the same axis. Written as a formula, IC (ω2−ω1 )=∫
t1

t2

MC d t .

Theorem: The change of angular momentum of a rigid body about the  fixed axis of rotation in a
time period equals the integral of moments of forces exerted on the body about the same axis.

Written as a formula, I 0 (ω2−ω1 )=∫
t1

t2

M 0 d t

Time integration here still simplifies to a multiplication by time if moments are constant.

This theorem can also be obtained by a simple translation of linear and angular terms of motion
according to  our  dictionary:  mass,  velocity and resultant  force  are  replaced by the  moment  of
inertia, angular velocity and resultant torque, respectively.

This reference to the dictionary may also help in finding the cases of application of the theorem.
Since neither the angle of rotation nor the angular velocity appears in the statement, which implies
its use for rotational motions where all but one of the other variables are known.

1
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Example 1

A cylinder of mass M I=30kg and radius R I=0.6m rotates about 
its fixed vertical axis with an angular velocity ωI=100 rad/s 
(see top view in the figure).
This cylinder is stopped by another one of mass M II=60kg and 
radius R II=0.45 m (rotating in the same sense with an angular 
velocity ω II=200 rad/s) in a way that a force F=300N is applied 
at the axis of cylinder II  in direction y , as well as another force V
in direction z  is applied to prevent the same axis from sliding.
The coefficient of kinetic friction between cylinders is μ=0.2 .
Find the time until cylinder I  stops.

Solution

Theorems  are  written  according  to  forces  acting  on  each
body;  those  forces  are  shown  in  the  figure  to  the  right.
Forces in direction y are as follows: the given F , the normal
force and a component of the force exerted by the axis ( T y ).
In direction z, relative velocities at the point of contact must
be  observed  first:  cylinders  I and  II move  right  and  left,
respectively. Forces of kinetic friction are always opposite;
let  the  force  acting  on  the  axes  of  cylinders  I and  II be
denoted by T z  and V , respectively.

The top cylinder does not move in direction y, so Euler's first
law reads now as

N – 300=60⋅0→N=300 N , hence the force of friction is
F f=0.2⋅300=60N .

The bottom cylinder is rotated only by the friction about the axis of rotation. Moment of inertia

about that axis is I 0=
30⋅0.62

    2
=5.4 kgm2 . The angular impulse-momentum theorem for the same

axis can now be written between the starting and final instant of braking as

↷ :5.4⋅(0−100)=−60⋅0.6⋅t ; 

the solution is t=15s .

It can be further used to find angular velocity of the top cylinder still from the same theorem

written about its axis of rotation: ↷ :
60⋅0.452

   2
(ω –200)=−60⋅0.45⋅15→ ω=133.3 rad/s(↷) ,

showing that its original sense of rotation is still preserved. This means that the sense of friction is
taken into account correctly, the time calculated above is the solution indeed.
Remark: 'stopping' means here a single instant, cylinder I starts then rotating in opposite sense immediately.
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Exercise 1

A cylinder of mass m=30kg and radius R=0.6m rotates 
witha an angular velocity ω1=100rad/s. The cylinder is 
stopped by a force F=300 N applied at the end of a rod 
of length l=2m (the rod can rotate about a fixed axis at its 
other end, the weight of the rod can be neglected). 
The coefficient of kinetic friction between the rod and the 
cylinder is μ=0.2 . Find the time elapsed until stop.

Solution

The  calculation  of  changes  in  the  motion  of  the  cylinder
requires all forces acting on rigid members to be known: the
sense of any forces are unchanged in any time instant t  until stop.

Draw all forces with their assumed senses into the diagram.

The rod stands still; thus, the angular impulse-momentum
theorem can be written about the centre of rotation as an
equation  with  zero  on  its  right  hand  side.  Write  this
equation assuming that the rod is narrow enough for the
rotational effect of friction about its pinpoint be neglected:

∑ M i :
This  equation  can  be  solved  for  the  normal  (tightening)
force between the rod and the cylinder:

N=

The force of kinetic friction: F f=
Since the force of friction is  the only one that rotates the cylinder about its axis,  the angular
impulse-momentum theorem can be written about that axis passing through the centre of mass.
The corresponding moment of inertia is a follows:

IC=
The theorem should be written for the entire time interval of braking:

It can be solved for the time until stop:

t2=

Example 2 

A cylinder of mass m=6 kg and radius R=0.2 m is free of rotation when put onto the 
horizontal ground. The velocity of its centre of mass is vC 0=3 m/s at the instant of first touch. 
What time does it take for the cylinder to reach pure rolling if the coefficient of kinetic 
friction is μ=0.2 ?
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Solution

The bottom point of the cylinder moves on touch, which results in a
rolling with slipping in the initial instant. If the bottom point of the
cylinder moves ahead and is therefore acted upon a force of friction
backwards. Since this the only horizontal force that can rotate about
the centre of mass, it defines both the sense of horizontal and angular
acceleration. (Due to slipping; however, they are now independent.)

From Euler's first law in vertical direction,

6⋅9.81– N=6⋅0 ,

which yields N=58.86 N  

and then F f=0.2⋅58.86=11.77 N

The  impulse-momentum  theorem  can  be  written  in  horizontal
direction as follows:

6⋅(vC 2 –3)=−11.77⋅t → vC 2=3 – 1.962⋅t

The bottom point of the cylinder is NOT the instantaneous centre of rotation but the angular
impulse-momentum theorem can still be written about the centre of mass:

↷ :
6⋅0.22

   2
⋅(ω2−0)=11.77⋅0.2⋅t → ω2=19.62⋅t  

Pure rolling is reached when the velocity vC 2−ω2⋅R  of the bottom point of the cylinder reduces
to zero, that is, vC 2=ω2⋅R  :

3−1.962⋅t=19.62⋅t⋅0.2→ t=0.5097s

Exercise 2

A cylinder of mass m=6kg and radius R=0.2m rotates with an angular velocity ω0=20 rad/s 
when it is put onto a horizontal plane. The velocity of the centre of mass is zero on first touch.
What time does it take for the cylinder to reach pure rolling if the coefficient of kinetic 
friction is μ=0.2?

Solution

Draw all  forces exerted upon the cylinder into the figure and mark the
acceleration of the centre of mass as well as the angular acceleration.

Write Euler's first law in a vertical direction:

∑ F iy :
The solution:

N=  F f=
Write now the impulse-momentum theorem in the direction of translation and express velocity as
a function of time:

When rolling with slipping, the instantaneous centre of rotation is subject to change, that is why
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the angular impulse-momentum theorem can only be written about the centre of mass. Calculate
the moment of inertia about the axis passing through the centre of mass:

IC=
Write  the  angular  impulse-momentum theorem about  the  centre  of  mass  and express  angular
velocity from it:

∑ M i
(C):

When pure rolling starts, vC 2−ω2⋅R=0 , that is:

yielding the time elapsed until then as t2=

The work-energy theorem

Kinetic energy

Kinetic energy of a rigid body can be obtained based on a translational part (given by the velocity of

the centre of mass) and a rotational part (about the centre of mass): T=
1
2

m⋅vC
2
+

1
2

IC⋅ω
2

.

The parallel axis (or Steiner's) theorem, mentioned in relation with moments of inertia, can be used
to prove that kinetic energy of a body in a general plane motion can also be obtained directly from

the moment of inertia about its instantaneous centre of rotation: T=
1
2

I 0⋅ω
2

. (Because the velocity

of the centre of mass is vC=ω⋅rC 0  where rC 0  is the distance between the centre of mass and the
instantaneous centre of rotation and m⋅rC 0

2 +IC=I 0 .)

Mechanical work

The work of forces acting on a rigid body is calculated as in the case of particles. The work of
torques can also be interpreted as the sum of works of forces that constitute an equivalent couple.
Their works done on the translational part of the motion are the negatives of each other, and the sum
of elementary works done on elementary translations can be proved to be equal to the product of the
torque and the angle of rotation. Thus, the work of a constant moment M is L1−2=M⋅(ϕ2−ϕ1) .

The work-energy theorem

The theorem can still be written in the form T 2– T 1=L1−2  but the interpretation of terms is slightly
modified with respect to that learnt for particles. Kinetic energy components  T i  also comprise
effects of rotational motion, whereas the term L1−2  means the sum of works of (external) forces
and torques between the initial and final configuration of the motion.

5
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Example 3

A cylinder of radius r=0.25 m and mass m=8kg rolls up against the slope of inclination 
α=30 ° without slipping. Initial velocity of the centre of the cylinder is vC 1=14 m/s.
Find the distance covered by the cylinder if the factor of rolling resistance is λ=0.04 m.

Solution

The  figure  to  the  right  shows  all  forces  exerted  upon  the
cylinder in a general instant of motion. Pure rolling implies
that  vC=ω⋅r ,  and  the  moment  Γ  of  rolling  resistance  is
counterclockwise.

From a resolution perpendicular to the slope:

N – 8⋅9.81⋅cos30°=0→  N=67.97 N ,

which gives the moment of rolling resistance:

 Γ=67.97⋅0.04=2.719Nm

Kinetic energy is zero when the cylinder stops ( T2=0 ). In
the initial configuration, kinetic energy can be obtained in two different ways:

T1=
1
2

8⋅142
+

1
2

8⋅0.252

   2 ( 14
0.25 )

2

=1176J (translation plus rotation about the centre of mass)

T1=
1
2

3
2

8⋅0.252( 14
0.25 )

2

=1176 J (rotation about the instantaneous centre)

The work of forces exerted on the body as well as of the moment of rolling resistance should be
obtained with the following considerations. Forces perpendicular to the slope perform zero work;
the bottom point has no velocity, so friction performs no work either. Pure rolling ensures that a
distance s along the slope means an angle s/R (rad) of rotation of the cylinder: this is the angle the
moment of rolling resistance performs a (negative) work on. The work-energy theorem states that

0 –1176=−8⋅9.81⋅sin 30 °⋅s – 2.719⋅
 s
0.25

,

from which the distance covered until stop is s=23.47 m

Exercise 3

A cylinder of radius r=0.25 m is left on its own in rest on the top of a slope with an
inclination of α=30° . The cylinder starts moving downwards with a pure rolling motion, 
its factor of rolling resistance λ=0.04m.
Find the distance needed for the centre of the cylinder to reach the velocity vC=10m/s.

Solution

Draw all forces exerted upon the body, as well as kinematic variables of
the centre of mass and expected senses of accelerations into the figure.

Write Euler's first law in the direction perpendicular to the slope:

∑ F i↙:
From this we get
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N=  Γ=
Calculate moments of inertia for both the point of contact and instantaneous centre of rotation:

IC= I0=
Write the kinetic enerqy both at the beginning and end of the motion:

T1=

T 2=
Distances (angles) that individual forces (moments) do work on:

m⋅g⋅cosα :
N :
F f :

m⋅g⋅sin α :
Γ :
 

The work-energy theorem:

T 2−T 1=L1−2:  
The distance that was looked for is then

s=

Example 4

A rod of mass m=5 kg and length l=1.6 m swings about 
a pinned support. While passing the bottom vertical 
configuration, the velocity of its lowest point is v=3 m/s. 
Find  the maximum angle ϕ  of deviation.

Solution

Angular acceleration could be found from forces exerted on
the rod for any particular angle of deviation but  κ would not
be  constant  and  the  solution  of  the  resultant  differential
equation would not be easy at the present level of discussion,
that is why the work-energy theorem is used here.

The kinetic energy at the instant of stop is T2=0  J , while for
the bottom vertical configuration it can be directly obtained
from the rotation about the pin.  At the same time,  angular
velocity is calculated from the velocity of the bottom point:

 ω0=v / l=3 /1.6=1.875 rad/s

Kinetic energy is therefore T1=
1
2

5⋅1.62

  3
1.8752

=7.5 J

Forces transmitted at the pin do zero work because the pin is fixed. The work of gravity depends
on the vertical translation of the centre of mass of the rod and can be found based on the second
figure: the translation happens upwards, making the work of a force directed downwards to be
negative. The theorem now reads:
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0−7.5=−5⋅9.81⋅
1.6
 2

(1−cosϕ) ,

which yields the maximum angular deviation as ϕ=36.01°

Exercise 4

A rod of mass m=8 kg and length l=1.8m is supported 
by a pin at its bottom. The rod passes its upright position 
with an angular velocity ω0=4 rad/s. 
Find the velocity of the moving endpoint when the rod 
reaches a horizontal position.

Solution

If the angular velocity of the body in its horizontal position is known, then the velocity at any
other point of the body can be obtained.

The body rotates about a fixed axis, so its kinetic energy can be calculated from the formula
related to the instantaneous centre of rotation; the corresponding moment of inertia is

I 0=
Thus, kinetic energy in at the initial instant:

T 1=

The kinetic energy just before the collision, assuming ω  to be the current angular velocity:

T 2=
The work done by forces on the body:

L1−2=
The work-energy theorem is applied as

T 2– T 1=L1−2→  
The angular velocity is obtained as ω=

The velocity of the free end of the rod: vA 2=

Example 5

A rod of mass m=3 kg and length l=0.6 m 
supported by a pin at one end is lift to a 
horizontal position then released. 
Find the velocity of the centre of mass as well as
the angular velocity when the rod reaches the 
position at ϕ=20°  as shown in the figure

Solution

Since the rod starts from rest, its initial kinetic energy is zero (T 1=0 J) . 

Its angular velocity in the final position is ω2 , so kinetic energy is
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T2=
1
2

3⋅0.62

  3
ω2

2
=

1
2

0.36⋅ω2
2
=0.18ω2

2

There  is  only  a  displacement  under  the  point  of
application of weight, so it is the only force performing
work  in  the  problem.  Calculate  that  work  from
potential energy of the force with a base level set to the
bottom position of the centre; its initial value is

U1=3⋅9.81⋅0.3=8.829J

In the final configuration,

U2=3⋅9.81⋅(0.3– 0.3⋅sin 20°)=5.809J .

The work done by gravity reads: L1−2=U1−U 2=8.829−5.809=3.02J

The work-energy theorem implies that: 0.18ω2
2
−0=3.02 ,

yielding the angular velocity: ω2=4.096 rad/s

and velocity of the centre of mass: vC 2=4.096⋅0.3    → vC 2=1.229 m/s

Exercise 5

A rod of mass m=5 kg and length l=0.8m 
supported by a pin at one end is released with
an angular velocity ω1  from a position  at ϕ=20°
as shown in the figure. 
Find ω1  such that the rod could still pass
its top vertical position.

Solution

An angular velocity is looked for when the rod just reaches its vertical position. Its kinetic energy
at that instant is then

T2=
A kinetic energy cannot be smaller as it would be associated with an imaginary velocity.

In the initial configuration; however, the body moves: kinetic energy can be written here as a
function of angular velocity. The moment of inertia about the axis of rotation,

I 0=

The kinetic energy in the initial configuration in terms of ω1  is written as:

T 1=
Find vertical component of the translation of the centre of mass:

s y=
The work-energy theorem:
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that solves to
ω1=

Summary

For the sake of clarity, terms, definitions and theorems related to the motion of a particle or rigid 
body are collected in a table below:

Particle Rigid body

kinematic
variables:

position: x (t) , r (t)

velocity: v (t ), v (t)

acceleration: a( t) ,a(t )

position of the centre of mass: xC (t) , rC (t)

angle of rotation of the body: ϕ(t)

velocity of the centre of mass: vC (t ), vC (t)

angular velocity of the body: ω(t )

acceleration of the centre of mass: aC (t ), aC (t)

angular acceleration of the body: κ( t)

law of 
motion:

∑ F=m⋅a ∑ F=m⋅aC  - for the centre of mass

∑MC=IC⋅κ  - about the centre of mass

∑M 0=I 0⋅κ  - about the inst. centre of rotation

terms: linear momentum: m v linear momentum: m vC  - for the centre of mass

langular momentum: IC ω , I 0ω

kinetic energy: T=
1
2

mv2
T=

1
2

mvC
2
+

1
2

IC ω
2

 - translational + rotational

T=
1
2

I 0 ω
2

 - about the inst. centre of rotation

work: L1−2=R(s2−s1)

potential of gravity: U g=mgh

L1−2=R(s2−s1)+M (ϕ2−ϕ1)

U g=mghC

theorems: I-M: m(v 2−v1)=R(t 2−t 1) I-M: m(vC2−vC 1)=R(t2−t1)  - centre of mass

AI-M: IC (ω2−ω1)=MC (t 2−t 1)  - c. of mass

           I 0(ω2−ω1)=M 0(t 2−t 1)  - inst. c. of rot.

W-E: T2−T1=L1−2 W-E: T2−T1=L1−2

10
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Vector product

Vector product (or cross product, a×b, named after the cross sign of multiplication) of two vectors is
a third vector perpendicular to the plane spanned by the first two vectors, its magnitude equals the
area of parallelogram spanned by the same two vectors, and is directed according to the handedness
of the coordinate system. Because of that direction, the order of vectors in a cross product matters,
since  a×b=−b×a . The above definition implies that unit vectors along axes  x,  y,  z satisfy the
following relationships:  i× j=k ,  j×k=i ,  k×i= j  and  i×i= j× j=k×k=0 . Vectors  a and b
can be expressed in terms of unit vectors as follows:  a=ax i+a y j+azk  and  b=bx i+b y j+bz k .
Plugging both sums into the cross product then multiplying by terms and using identities on unit
vectors we get:

a×b=[
ax

a y

az
]×[

bx

b y

bz
]=[

ay bz– azb y

azbx –ax bz

axb y – ay bx
] .

As an alternative of memorizing this formula, one can equivalently depart from the expansion of a
determinant as follows:

.

For instance, when expanding a 3-by-3 determinant, each entry of the top row is multiplied by a
difference of products of two successive entries available through steps right and down and of two
successive entries available through steps left and down. The matrix is interpreted here as a cyclic
one: when a left or right border is reached, one can continue at the opposite border. The above
figure illustrates this procedure for the top left entry i, that is, for the first coordinate of the product
vector (green circles refer to positive, red ones to negative products).

Example 1
Calculate vectors a×b , b×a

if a=[
12.5

−5,4
8.73 ] ,  b=[

3.9
−11,3

6.6 ] .
Solution

a×b=[
−5.4⋅6.6−8.73⋅(−11.3)

8.73⋅3.9−12.5⋅6.6
12.5⋅(−11.3)−(−5.4)⋅3.9]=[ 63.01

−48.45
−120.2]

b×a=[
6.6⋅(−5.4)−(−11.3 )⋅8.73
3.9⋅8.73−6.6⋅12.5

(−11.3)⋅12.5−3.9⋅(−5.4 ) ]=[
−63.01

48.45
120.2]

Exercise 1 

Calculate vectors a×b , b×a  if a=[ 21.07
−1.87

0.0 ] ,  b=[42.2
13.8
0.0 ] .

1

a×b=|
i j k
ax ay az

bx by bz
|

a

b

a×b

α
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Solution

a×b=[
                                
  
  ]=[

                
  
  ]

Remark: Since the z component of both vectors is zero, the parallelogran spanned by a and b lies in the plane xy. The

angle  between  vectors  a and  b is α=arccos (|a⋅b|/ (|a||b|) )=23.18 ° ,  hence  the  area  of  parallelogram  is

|a||b|sinα=369.7 , just equals the length of the product vector a×b.

b×a=[
                                
  
  ]=[

                
  
  ]

We emphasize that all discussed vector operations were defined for two or more vectors, followed
by computational methods that can be implemented in a given coordinate system. It implies that any
change in the coordinate system may influence the numeric solution of the problem; however, its
physical interpretation remains the same.

Problems on forces in 3D

Almost all problems discussed so far within this subject were either original planar problems or
more complex ones simplified to 2D. Unfortunately, not all 3D problems can be solved using two-
dimensional model and formalism; however, a general three-dimensional description is applicable
in solutions to common 2D problems as well. The introduction to theory of forces and structures in
the space is developed in a way analogous to which was followed in planar force systems: basic
operations on forces are revised, possible types of constraints of structures and solution methods to
some typical  structures  are  presented.  Finally, the  procedure of  finding internal  forces  in  cross
section is also extended to 3D.

Moments and forces in the three-dimensional space

If  a  force (acting at  a  given point)  is  specified in  3D,  three signed components  are  needed in
contrast  to  two  components  that  are  sufficient  in  2D.  (If  a  force  is  intended  to  be  given  by
magnitude and direction, this latter one can be specified by three angles made by the force vector
and each coordinate axis; however, the squares of cosines of those angles must add up to 1; thus,
there are still three independent scalars only.)

For the specification of a torque in the space, recall that a torque appearing in planar problems could
always be interpreted as a moment rotating about an axis perpendicular to the plane. For that reason,
a 3D approach requires moments about three axes to be given, so moments have to be dealt with as
vectors henceforth (as has already been done in Eample 2 and Exercise 2 of Lecture 4). Viewed
down in front of its vector (that is, if the tip of its vector points towards the observer), a torque
represents a positive (counterclockwise) rotation.

2
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Resultant of a 3D force system

As  has  already  been  noticed  in  planar  problems,  two  successive  steps  are  necessary  for  the
determination of a unique effect equivalent to a given force system. In the first step, an equivalent
force-couple system is found that replaces the system by a force passing through a fixed point and a
couple associated to it. Having both the force and the couple determined, it is already possible to
decide upon the type of resultant and calculate its further properties when necessary.

Finding the equivalent force-couple system at a point (also called reduction of the system to a point
for brevity) is technically done by the use of resolution equations: force components obtained in this
way  are  independent  of  the  point  chosen.  The  associated  moment  is  obtained  from  moment
equations written about  axes passing through the point  chosen. These equations  should contain
signed components of moment vectors that are parallel to the respective axis. With an analogy to 2D
calculations,  moment  of  a  force  about  an  axis  t can  also  be  interpreted  as  the  moment  of  its
component lying within a plane perpendicular to t about the same axis t.

In the decision on the type of resultant, the following rules apply. If the force si zero (i. e., all its
components are zero), two cases are possible: either the associated moment is also zero and the
force system is in equilibrium or the moment is nonzero and that torque itself is the resultant of the
system. (Keep in mind that moment vectors, unlike forces, are free vectors and can therefore be
translated  in  any  sense  without  changing  its  physical  effect.)  If  the  force  (any  of  its  three
components) is nonzero, the type of resultant still depends on whether or not the vectors of force
and torque can be replaced by an equivalent force as has been done in two dimensions. If the two
vectors are perpendicular to each other, then such a replacement is possible and the resultant is a
force. If, however, the associated moment has a nonzero component parallel to the force vector,
replacement by an equivalent force will only eliminate the component of torque perpendicular to the
force but the parallel component remains. It means that the resultant of the force system consists of
a force and a torque of parallel directions. This resultant is called wrench (the quotient of moment
and force is often referred to as the pitch of the wrench).

In the above procedure it is crucial to check two vectors for orthogonality. Far the most efficient
method is the evaluation of their dot product: a nonzero result implies both that the vectors are not
perpendicular and none of them is a zero vector. Based on this property, the following table might
help in the process of deciding on the type of resultant.

Type of resultant Properties  of  the  force  and  the
associated moment

Notes

equilibrium F=0 , M=0 Both vectors must be zero vectors.

torque F=0 , M≠0

force F≠0 , F⋅M=0 Dot product is also zero if M is a zero vector.

wrench ( F≠0 ), F⋅M≠0 Dot product would give zero if any of F or M
were zero vectors.

If the resultant is either a force or a wrench, yet another step is left: a point on the line of action of
the resultant needs to be determined with respect to the point where the system was reduced to. In
order  to  do  so,  let  the  associated  moment  be  resolved  into  components  parallel  (M∥)  and

perpendicular  (M⊥ )  to the force. The shift of the line of action measures  k=|M⊥|/|F| , and its

3
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direction should be perpendicular to both the force and the perpendicular component M⊥ .

Unit vector of that direction of shift can be obtained with the help of the cross product of two vectors:  F×M ⊥

|F×M ⊥|
.

Because of their orthogonality, the dot product of two vectors in the denominator can be written as an algebraic product

of lengths, which yields the vector of shift between lines of action as: Δ r=
F×M ⊥

|F||M ⊥|
⋅
|M ⊥|

|F|
=

F×M ⊥

|F||F|
. In addition to that,

F×M=F×(M∥+M ⊥)=F×M∥+F×M⊥=0+F×M⊥=F×M ⊥ , and the length of a vector equals the square root of dot

product taken with itself; the relative position of the line of action of the resultant is given by the vector Δ r=
F×M
F⋅F

.

Example 2
Reduce the given system of forces and torques to point A and find the type of the resultant.

Solution
The  problem of  finding  equivalent  force-couple  system at  point  A can  be  formulated  as  an
equivalence statement  (F A ,M A )=̇ (F1 ,F2 ,M ) . Components of force  FA  are found by writing
and solving resolution equations. Components of oblique forces are calculated from the actual
length and its projections (onto each coordinate axis) of any segment along the line of action of
the force (fractions in the resolution equations below correspond to cosines of angles made by the
line of action with each axis). Based on the figure above, the length of oblique segments can be
chosen as follows:
l1=√22

+32
+42

=5.385m , l2=√02+32+42=5 m .
The resolution equations read:

∑ F ix : FAx=+5⋅
2

5.385
→F Ax=+1.857kN

∑ F iy : FAy=−5⋅
3

5.385
+7⋅

3
5

→F Ay=+1.414 kN

∑ F iz : F Az=−5⋅
4

5.385
+7⋅

4
5

→F Az=+1.886 kN

Components of  the associated moment can be foundfor convenience from moment equations
written about each axis passing through point A (for clarity, all forces are now resolved in their
point of application shown in the figure):

4

F1=5kN
F2=7 kN

M=6 kNm

x

y

z

4 m 2m

A

30 °
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∑M ix
A
: M Ax=+5⋅

3
5.385

⋅4−7⋅
4
5
⋅3+6⋅sin 60 ° →MAx=−0.4618kNm

∑M iy
A

: M Ay=+5⋅
2

5.385
⋅4+7⋅

4
5
⋅4+0 →MAy=29.83kNm

∑M iz
A : M Az=+0−7⋅

3
5
⋅4−6⋅cos60 ° →MAz=−19.8 kNm

The equivalent force-couple system is therefore: FA=[1.857
1.414
1.886]kN , M A=[−0.4618

29.83
−19.8 ]kNm

Since the force is not a zero vector, calculate the dot product of the two vectors:
FA⋅M A=1.857⋅(−0.4618)+1.414⋅29.83+1.886⋅(−19.8)=3.979 kN⋅kNm

Since this is nonzero, the resultant is a wrench.

Exercise 2
Reduce the given system of forces and torque to point A and find the type of the resultant.
Repeat the procedure via reduction to the origin instead of A.

Solution 1: Reduction to point A
Given segments of both lines of action are needed in order to find components of oblique forces:

l1=

l2=
Equivalence statement:               =̇
that makes possible to calculate all three components of the force from resolution equations:

∑ F i ..:

∑ F i ..:

∑ F i ..:

5

F1=5kN

F2=7 kN

M=6 kNm

x

y

z

4 m 2m

A

α=30 °
60 °
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The associated moment is obtained from three moment equations:

∑ M i.. :

∑ M i.. :

∑ M i.. :
The two calculated vectors written in components:

FA=[
                    
 
 ] , M A=[

                    
 
 ]

Their dot product for deciding on the type of resultant:

FA⋅M A=
Thus, the resultant is:

Solution 2: Reduction to the origin
Three components of the force still from resolution equations are as follows:

∑ F i ..:

∑ F i ..:

∑ F i ..:
Three moment equations used for obtaining each component of the associated moment read:

∑ M i.. :

∑ M i.. :

∑ M i.. :
The calculated vectors are

F0=[
                    
 
 ] , M 0=[

                    
 
 ]

Their dot product for deciding on the type of resultant:

F0⋅M0=
The  dot  product  should  be  equal  to  that  obtained  in  the  previous  solution;  thus,  the  same
conclusion should be drawn. The resultant is:

6
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Example 3
Identify the type of resultant of two forces shown in the figure.

Solution 1
If the equaivalent force-couple system is found at  the origin,  then  (F0,M 0 ) =̇ (F1, F2 )  implies
resolution equations that solve to ∑ F ix : F0 x=+3 kN , ∑ F iy : F0 y=0kN , ∑ F iz : F0 z=+3 kN .
Moment equations are written about the coordinate axes:

∑M ix : M 0x=0+3⋅4  →M 0x=+12 kNm

∑M iy : M 0 y=0

∑M iz : M 0 z=0

The two vectors written out by components: F0=[303]kN , M0=[12
0
0 ]kNm , 

their dot product is F0⋅M 0=3⋅12+0⋅0+3⋅0=36≠0  showing that the resultant is a wrench.
Note: If an equivalent force-couple system was found first at any endpoint, say A, of the normal transversal of two
lines of action (i.e., the shortest segment, say AB, connecting two skew lines), then the associated moment will be
parallel to the plane spanned by vectors parallel to the forces but perpendicular to the force at point B. Since the sum
of two forces will not be paralel to any original force, so will not be perpendicular to the associated moment either:
their dot product cannot give zero. It can be therefore formulated as a general rule that the resultant of two forces in
skew lines of action is always a wrench.
Solution 2
If  the  equaivalent  force-couple  system is  found at  point  A,  then  (F A ,M A )=̇ (F1 ,F2 )  implies
resolution equations of the same content as those of Solution 1.
Moment equations are now written about axes passing through point A in coordinate directions:

∑M ix
A : M Ax=0+3⋅2  →MAx=+6 kNm

∑M iy
A : M Ay=0

∑M iz
A : M Az=3⋅2+0 →MAz=+6kNm

The two vectors are: FA=[303]kN , M A=[606]kNm . 

It is quite straightforward to see now that these vectors are parallel, that is, their resultant is a
wrench where the line of action of the force in that wrench passes through point  A. If the dot
product  is  evaluated  nevertheless  (FA⋅M A=3⋅6+0⋅0+3⋅6=36≠0 ) ,  it  will  not  only be  found
nonzero but one can also see that it equals the former product F0⋅M 0 . It is true in general: the
dot product of force and associated moment in a force-couple system equivalent to a given system
of forces is constant, irrespective of the point the reduction has been done to.

7

F2=3kN x

y

z

A
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Exercise 3
Determine the type of resultant of two forces shown.

Solution
Find the point of reduction and write the corresponding equivalence statement:

Calculate force components from resolution equations:

∑ F ix :

∑ F iy :

∑ F iz :
Calculate components of the associated moment:

∑ M ix :

∑ M iy :

∑ M iz :
Write both vectors by components and decide on the type of resultant:

F  =[
                    
 
 ] , M   =[

                    
 
 ]

The resultant is:

8

F2=5 kN

x

y

z

A


