TANTÁRGYI ADATLAP

I. TANTÁRGYLEÍRÁS

1 ALAPADATOK

1.1 Tantárgy neve

VÍZRENDSZEREK MODELLEZÉSE

1.2 Azonosító (tantárgykód)

BMEEOVVMV-1

1.3 A tantárgy jellege

kontaktórás tanegység

1.4 Óraszámok

típus óraszám előadás (elmélet) 2/hét gyakorlat 1/hét

1.5 Tanulmányi teljesítményértékelés (minőségi értékelés) típusa

vizsga

1.6 Kreditszám

4

1.7 Tantárgyfelelős

Dr. Krámer Tamás, egyetemi docens (kramer.tamas@epito.bme.hu)

1.8 Tantárgyat gondozó oktatási szervezeti egység

Vízépítési és Vízgazdálkodási Tanszék (www.vit.bme.hu)

1.9 A tantárgy weblapja

www.epito.bme.hu/BMEEOVVMV-1

1.10 A tantárgy oktatásának nyelve

magyar és angol

1.11 A tantárgy tantervi szerepe

kötelező az infrastruktúra-építőmérnöki (MSc) szak Víz- és vízi környezetmérnöki specializációján

1.12 Közvetlen előkövetelmények

Ajánlott előkövetelmény

Hidroinformatika (BMEEOVVA-F3)

Építőmérnöki informatika (BMEEOFTAT42)

Térinformatika (BMEEOFTAT43)

Kizáró feltételek (nem vehető fel a tantárgy, ha korábban teljesítette az alábbi tantárgyak vagy tantárgycsoportok bármelyikét)

Vízrendszerek modellezése (BMEEOVVMJT1)

1.13 A tantárgyleírás érvényessége

2017. szeptember 1-től.

2 CÉLKITŰZÉSEK ÉS TANULÁSI EREDMÉNYEK

2.1 Célkitűzések

A tantárgy célja, hogy a hallgató megismerje a számítógépes szimulációs modellezés módszereit a természetes és mesterséges vízfolyások, tavak és tározók állapotfeltárására, továbbá különböző célú beavatkozások következményeinek prognosztizálására; a különböző dimenziószámú és fizikai tartalmú modellek alkalmazási körének definiálása gyakorlati példákkal illusztrálva, tárgyalva a kölcsönható folyamatok modelljeinek összekapcsolását, a modellezési bizonytalanságot és a modellezéshez kapcsolódó olyan elemzési és utófeldolgozási eljárásokat, amelyekkel hatékonyan támogatható a vízgazdálkodási tervezés. Cél továbbá, hogy házi feladatokon keresztül fejlődjenek a hallgató gyakorlati készségei és a komplex gondolkodásmódja, és nyitottabbá váljon új szoftverek elsajátítására.

2.2 Tanulási eredmények

A tantárgy sikeres teljesítése után a hallgató:

A. Tudás

- 1. Ismeri a vízgazdálkodási feladatok megoldására szolgáló szimulációs módszerek főbb típusait.
- 2. Ismeri a vízgyűjtők összevont paraméterű modellezési eljárásait, ismeri a kalibrálásuk módját és adatigényét.
- 3. Ismeri, hogy milyen térinformatikai eljárások támogatják a felszíni lefolyás modellezését és a vízgyűjtők hidromorfológiai feltárását.
- 4. Tudja, hogy milyen elvek alapján építhető fel egy 1D folyómodell és milyen adatigénye és bizonytalansági forrásai vannak a modell rendeltetésétől függően.
- 5. Ismeri az árvízi veszély szimulációs számítási módszerének elvét, a síkvidéki ill. a dombvidéki árterekre való alkalmazás főbb sajátosságait és adatigényét.
- Ismeri a 3D folyómodellezés alapegyenletinek lényegét, kalibrációs adatigényét, peremfeltételeit és példákat tud mondani a 3D modellezéssel kimutatható áramlási jelenségekre.
- 7. Ismeri a tavak hidrodinamikai modellrendszerének főbb elemeit és ezek egymáshoz való kapcsolódását.
- 8. Érti, hogy mi a célja a numerikus megoldás gyorsításának és el tudja magyarázni, hogy milyen elven éri ezt el egy implicit megoldó, a párhuzamos számítás vagy az adaptív rácsfelbontás.

B. Képesség

- 1. Képes egy összevont paraméterű vízgyűjtőmodell kalibrálására, igazolására.
- 2. Képes egy folyószakasz árvízi lefolyásának 2D modellezésére és az eredmények térképi elemzésére.
- 3. A számítási pontosságot szem előtt tartva megszerkeszt egy peremekhez igazított strukturálatlan számítási rácshálót.
- 4. Képes egy folyórendszer szükségtározójának hidrodinamikai szimuláción alapuló hatásvizsgálatára.
- 5. Üzemeltet egy összekapcsolt 1D-2D hidrodinamikai modellt.
- 6. Eredményeit rendezett írásos formában, logikusan, szakszerű ábrázolással összefoglalja.

C. Attitűd

- 1. Együttműködik az ismeretek bővítése során az oktatóval és csoporttársaival.
- 2. Folyamatos ismeretszerzéssel bővíti tudását, és ehhez akár a kötelező tananyagokon túlmenően, webes forrásokból keres választ a kérdéseire.
- 3. Nyitott a számára új, angol nyelvű számítógépes szoftverek szükséges szintű elsajátítására.

- 4. Törekszik a pontos és hibamentes feladatmegoldásra.
- D. Önállóság és felelősség
 - 1. Csapat részeként együttműködik hallgatótársaival a feladatok megoldásában.

2.3 Oktatási módszertan

Előadások az elméleti ismeretekről. Gyakorlatok a modellezési feladatok megoldásának lépéseiről és az alkalmazott szoftverekről, valamint az otthon elkészített feladatrészek konzultálására; csoportosan, munkamegosztással készített házi feladatok, konzultálás csoportonként egy-egy saját laptopon; kommunikáció írásban és szóban.

2.4 Részletes tárgyprogram

hét	Előadások és gyakorlatok témaköre		
1.	Modellezési eljárások a vízgazdálkodásban; léptékek és dimenziószámok.		
2.	Csapadék-lefolyás modellezése I: eljárások, adatigények		
3.	Csapadék-lefolyás modellezése II: térinformatikai vonatkozások		
4.	1D folyóhálózatok modellszerkezetének kialakítása		
5.	2D árvízi lefolyásmodellezés; kalibrálás, bizonytalanságok		
6.	Domb- és síkvidéki árvízi veszélytérképezés modellezési eljárásai		
7.	Hatékony számítási eljárások: véges-térfogat modellezés adaptív és szabálytalan rács-		
	hálón, párhuzamosítás		
8.	1D-2D összekapcsolt modellezés		
9.	Folyószakaszok 3D áramlástani modellezése: matematikai alapok		
10.	3D RANS modellezés a gyakorlatban, ökohidraulikai elemzések		
11.	Folyami hidromorfológiai modellezés		
12.	Tavi hidrodinamika modellrendszere: meteorológia, hullámzás, vízmozgás, üledék-		
	mozgás, termodinamika		
13.	Felszíni és felszínalatti vizek kölcsönhatásának modellezése		
14.	Vízépítési tervezést támogató valószínűségi modellezés: MÁSZ, műtárgyak tervezése		

A félév közbeni munkaszüneti napok miatt a program csak tájékoztató jellegű, a pontos időpontokat a tárgy honlapján elérhető "Részletes féléves ütemterv" tartalmazza.

2.5 Tanulástámogató anyagok

- a) Tárgyhonlapról letölthető anyagok
 - 1. Előadásvázlatok: Vízrendszerek modellezése.
 - 2. Előadások diái
 - 3. Segédletek a szoftverekhez: HEC-HMS, HEC-RAS, SMS
- b) Ajánlott irodalom
 - 1. N.R.B. Olsen: Numerical Modelling and Hydraulics. NTNU, Norway. ISBN-82-7598-074-7 (NTNU weblapjáról szabadon letölthető)
 - 2. Pavel Novak, Vincent Guinot, Alan Jeffrey, Dominic E. Reeve: Hydraulic Modelling An Introduction: Principles, Methods and Applications. CRC Press, 2010.

2.6 Egyéb tudnivalók

Nincs.

2.7 Konzultációs lehetőségek

Konzultációs időpontok: az oktatók félév elején a tanszéki honlapon és hirdetőtáblán meghirdetett konzultációs idejében, az oktatók szobájában.

II. TANTÁRGYKÖVETELMÉNYEK

3 A TANULMÁNYI TELJESÍTMÉNY ELLENŐRZÉSE ÉS ÉRTÉKELÉSE

3.1 Általános szabályok

A 2.2. pontban megfogalmazott tanulási eredmények értékelése házi feladatok és a vizsgaidőszakban tett írásbeli teljesítménymérés alapján történik.

3.2 Teljesítményértékelési módszerek

Teljesítményértékelés neve (típus)	jele	értékelt tanulási eredmények
1. házi feladat (kis házi feladat)	HF1	B.1, B.6, C.1-C.4, D.1
2. házi feladat (kis házi feladat)	HF2	B.2-B.3, B.6, C.1-C.4, D.1
3. házi feladat (kis házi feladat)	HF3	B.4-B.5, B.6, C.1-C.4, D.1
Írásbeli vizsga	V	A.1-A.8, C.2

A szorgalmi időszakban tartott értékelések pontos idejét, a házi feladatok ki- és beadási határidejét a "Részletes féléves ütemterv" tartalmazza, mely elérhető a tárgy honlapján.

3.3 Teljesítményértékelések részaránya a minősítésben

jele	részarány
HF1	16%
HF2	17%
HF3	17%
Szorgalmi időszakban összesen	50%
V	50%
Összesen	100%

Az elérhető pontszám 40%-ánál gyengébb vizsgaeredmény Elégtelen vizsgajegyet eredményez.

3.4 Az aláírás megszerzésének feltétele, az aláírás érvényessége

Az aláírás megszerzésének feltétele, hogy a 3.2 pont szerint a házi feladatokra az elérhető pontszám legalább 40%-át egyenként elérje a hallgató.

Aki aláírással nem vizsgakurzust vesz fel, annak a szorgalmi időszakban megszerzett (félévközi) eredménye felülírja a korábbit.

3.5 Érdemjegy megállapítása

Az érdemjegyet a 3.3. pont szerinti összegzett eredményből az alábbi táblázat alapján számítjuk:

érdemjegy	Pontszám (P)	
jeles(5)	85%<=P	
jó(4)	70<=P<85%	
közepes(3)	55<=P<70%	
elégséges(2)	40<=P<55%	
elégtelen(1)	P<40%	

3.6 Javítás és pótlás

1) A házi feladatok mindegyike – szabályzatban meghatározott díj megfizetése mellett – késedelmesen a Részletes féléves ütemtervben szabályozott időpontig adható be.

3.7 A tantárgy elvégzéséhez szükséges tanulmányi munka

Tevékenység	óra/félév
részvétel a kontakt tanórákon	14×3=42
félévközi készülés a gyakorlatokra	4
házi feladat elkészítése	52
kijelölt írásos tananyag önálló elsajátítása	6
vizsgafelkészülés	16
összesen	120

3.8 A tantárgykövetelmények érvényessége

2017. szeptember 1-től