

A solid wheel of mass $m=10 \mathrm{~kg}$ and radius $R=10 \mathrm{~cm}$ is driven on a horizontal plane by a force $F=150 \mathrm{~N}$ through its centre. The wheel starts from rest and moves with pure rolling (rolling resistance is neglected, friction is sufficient to ensure a pure rolling motion). Find the angular acceleration of the wheel.
Calculate the distance covered by the center of mass of the wheel to reach an angular velocity $\omega=10 \mathrm{rad} / \mathrm{s}$?

State the work-energy theorem for a rigid body.
If equations are written instead of phrasal definition, give the meaning as well as the formula for calculation of each variable involved.

Calculate the reactions of the structure given below.
Make a final sketch.

Isolate the structure given in the figure.
Qualify the structure from the aspect of statical determinacy by accounting for the number of independent equations and unknowns.

Calculate the reactions of the structure given below.
Make a final sketch.

$$
\begin{aligned}
& \boldsymbol{y}^{2.2 \mathrm{~m}} \nless 3.3 \mathrm{~m} \quad>^{2.4 \mathrm{~m}}>^{2.3 \mathrm{~m}} \nless
\end{aligned}
$$

Calculate the reactions of the structure given below.
Make a final sketch.

$$
\nless 3.3 \mathrm{~m} \nless 6.6 \mathrm{~m} \quad \neq 3.3 \mathrm{~m}, 3.3 \mathrm{~m}
$$

